com.cloudera.knittingboar.records.RCV1RecordFactory.java Source code

Java tutorial

Introduction

Here is the source code for com.cloudera.knittingboar.records.RCV1RecordFactory.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.cloudera.knittingboar.records;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.StringReader;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;

import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.mahout.math.Vector;
import org.apache.mahout.vectorizer.encoders.ConstantValueEncoder;
import org.apache.mahout.vectorizer.encoders.FeatureVectorEncoder;
import org.apache.mahout.vectorizer.encoders.StaticWordValueEncoder;

import org.apache.mahout.math.RandomAccessSparseVector;

import com.cloudera.knittingboar.utils.Utils;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Lists;
import com.google.common.collect.Multiset;

/**
 * RecordFactory for
 * https://github.com/JohnLangford/vowpal_wabbit/wiki/Rcv1-example
 * 
 * @author jpatterson
 * 
 */
public class RCV1RecordFactory implements RecordFactory {

    public static final int FEATURES = 10000;
    ConstantValueEncoder encoder = null;

    public RCV1RecordFactory() {

        this.encoder = new ConstantValueEncoder("body_values");

    }

    public static void ScanFile(String file, int debug_break_cnt) throws IOException {

        ConstantValueEncoder encoder_test = new ConstantValueEncoder("test");

        BufferedReader reader = null;
        // Collection<String> words
        int line_count = 0;

        Multiset<String> class_count = ConcurrentHashMultiset.create();
        Multiset<String> namespaces = ConcurrentHashMultiset.create();

        try {
            // System.out.println( newsgroup );
            reader = new BufferedReader(new FileReader(file));

            String line = reader.readLine();

            while (line != null && line.length() > 0) {

                // shard_writer.write(line + "\n");
                // out += line;

                String[] parts = line.split(" ");

                // System.out.println( "Class: " + parts[0] );

                class_count.add(parts[0]);
                namespaces.add(parts[1]);

                line = reader.readLine();
                line_count++;

                Vector v = new RandomAccessSparseVector(FEATURES);

                for (int x = 2; x < parts.length; x++) {
                    // encoder_test.addToVector(parts[x], v);
                    // System.out.println( parts[x] );
                    String[] feature = parts[x].split(":");
                    int index = Integer.parseInt(feature[0]) % FEATURES;
                    double val = Double.parseDouble(feature[1]);

                    // System.out.println( feature[1] + " = " + val );

                    if (index < FEATURES) {
                        v.set(index, val);
                    } else {

                        System.out.println("Could Hash: " + index + " to " + (index % FEATURES));

                    }

                }

                Utils.PrintVectorSectionNonZero(v, 10);
                System.out.println("###");

                if (line_count > debug_break_cnt) {
                    break;
                }

            }

            System.out.println("Total Rec Count: " + line_count);

            System.out.println("-------------------- ");

            System.out.println("Classes");
            for (String word : class_count.elementSet()) {
                System.out.println("Class " + word + ": " + class_count.count(word) + " ");
            }

            System.out.println("-------------------- ");

            System.out.println("NameSpaces:");
            for (String word : namespaces.elementSet()) {
                System.out.println("Namespace " + word + ": " + namespaces.count(word) + " ");
            }

            /*
             * TokenStream ts = analyzer.tokenStream("text", reader);
             * ts.addAttribute(CharTermAttribute.class);
             * 
             * // for each word in the stream, minus non-word stuff, add word to
             * collection while (ts.incrementToken()) { String s =
             * ts.getAttribute(CharTermAttribute.class).toString();
             * //System.out.print( " " + s ); //words.add(s); out += s + " "; }
             */

        } finally {
            reader.close();
        }

        // return out + "\n";

    }

    // doesnt really do anything in a 2 class dataset
    @Override
    public String GetClassnameByID(int id) {
        return String.valueOf(id); // this.newsGroups.values().get(id);
    }

    /**
     * Processes single line of input into: - target variable - Feature vector
     * 
     * Right now our hash function is simply "modulo"
     * 
     * @throws Exception
     */
    public int processLine(String line, Vector v) throws Exception {

        // p.269 ---------------------------------------------------------
        // Map<String, Set<Integer>> traceDictionary = new TreeMap<String,
        // Set<Integer>>();

        int actual = 0;

        String[] parts = line.split(" ");

        actual = Integer.parseInt(parts[0]);

        // dont know what to do the the "namespace" "f"

        for (int x = 2; x < parts.length; x++) {

            String[] feature = parts[x].split(":");
            int index = Integer.parseInt(feature[0]) % FEATURES;
            double val = Double.parseDouble(feature[1]);

            if (index < FEATURES) {
                v.set(index, val);
            } else {

                System.out.println("Could Hash: " + index + " to " + (index % FEATURES));

            }

        }

        // System.out.println("\nEOL\n");

        return actual;
    }

    @Override
    public List<String> getTargetCategories() {

        List<String> out = new ArrayList<String>();

        // for ( int x = 0; x < this.newsGroups.size(); x++ ) {

        // System.out.println( x + "" + this.newsGroups.values().get(x) );
        out.add("0");
        out.add("1");

        // }

        return out;

    }

}