Java tutorial
/** * Copyright (C) 2016 Hurence (support@hurence.com) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.caseystella.analytics.distribution; import com.caseystella.analytics.DataPoint; import com.caseystella.analytics.distribution.scaling.ScalingFunctions; import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics; import org.junit.Assert; import org.junit.Test; import java.util.ArrayList; import java.util.List; import java.util.Random; public class DistributionTest { @Test public void testQuantiles() { Random r = new Random(0); List<DataPoint> points = new ArrayList<>(); DescriptiveStatistics stats = new DescriptiveStatistics(); Distribution distribution = null; for (int i = 0; i < 100; ++i) { double val = r.nextDouble() * 1000; DataPoint dp = (new DataPoint(i, val, null, "foo")); points.add(dp); stats.addValue(val); if (distribution == null) { distribution = new Distribution(dp, ScalingFunctions.NONE, new GlobalStatistics()); } else { distribution.addDataPoint(dp, ScalingFunctions.NONE); } } double realMedian = stats.getPercentile(50); double approxMedian = distribution.getMedian(); System.out.println("mean and std dev: " + stats.getMean() + ", " + Math.sqrt(stats.getVariance())); System.out.println("Real : " + realMedian + ", approx: " + approxMedian); Assert.assertTrue(Math.abs(realMedian - approxMedian) < 5); } }