com.badlogic.gdx.utils.ObjectMap.java Source code

Java tutorial

Introduction

Here is the source code for com.badlogic.gdx.utils.ObjectMap.java

Source

/*******************************************************************************
 * Copyright 2011 See AUTHORS file.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package com.badlogic.gdx.utils;

import java.util.Iterator;
import java.util.NoSuchElementException;

import com.badlogic.gdx.math.MathUtils;

/** An unordered map. This implementation is a cuckoo hash map using 3 hashes, random walking, and a small stash for problematic
 * keys. Null keys are not allowed. Null values are allowed. No allocation is done except when growing the table size. <br>
 * <br>
 * This map performs very fast get, containsKey, and remove (typically O(1), worst case O(log(n))). Put may be a bit slower,
 * depending on hash collisions. Load factors greater than 0.91 greatly increase the chances the map will have to rehash to the
 * next higher POT size.
 * @author Nathan Sweet */
public class ObjectMap<K, V> implements Iterable<ObjectMap.Entry<K, V>> {
    private static final int PRIME1 = 0xbe1f14b1;
    private static final int PRIME2 = 0xb4b82e39;
    private static final int PRIME3 = 0xced1c241;

    public int size;

    K[] keyTable;
    V[] valueTable;
    int capacity, stashSize;

    private float loadFactor;
    private int hashShift, mask, threshold;
    private int stashCapacity;
    private int pushIterations;

    private Entries entries1, entries2;
    private Values values1, values2;
    private Keys keys1, keys2;

    /** Creates a new map with an initial capacity of 32 and a load factor of 0.8. This map will hold 25 items before growing the
     * backing table. */
    public ObjectMap() {
        this(32, 0.8f);
    }

    /** Creates a new map with a load factor of 0.8. This map will hold initialCapacity * 0.8 items before growing the backing
     * table. */
    public ObjectMap(int initialCapacity) {
        this(initialCapacity, 0.8f);
    }

    /** Creates a new map with the specified initial capacity and load factor. This map will hold initialCapacity * loadFactor items
     * before growing the backing table. */
    public ObjectMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity);
        if (initialCapacity > 1 << 30)
            throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity);
        capacity = MathUtils.nextPowerOfTwo(initialCapacity);

        if (loadFactor <= 0)
            throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor);
        this.loadFactor = loadFactor;

        threshold = (int) (capacity * loadFactor);
        mask = capacity - 1;
        hashShift = 31 - Integer.numberOfTrailingZeros(capacity);
        stashCapacity = Math.max(3, (int) Math.ceil(Math.log(capacity)) * 2);
        pushIterations = Math.max(Math.min(capacity, 8), (int) Math.sqrt(capacity) / 8);

        keyTable = (K[]) new Object[capacity + stashCapacity];
        valueTable = (V[]) new Object[keyTable.length];
    }

    /** Creates a new map identical to the specified map. */
    public ObjectMap(ObjectMap<? extends K, ? extends V> map) {
        this(map.capacity, map.loadFactor);
        stashSize = map.stashSize;
        System.arraycopy(map.keyTable, 0, keyTable, 0, map.keyTable.length);
        System.arraycopy(map.valueTable, 0, valueTable, 0, map.valueTable.length);
        size = map.size;
    }

    /** Returns the old value associated with the specified key, or null. */
    public V put(K key, V value) {
        if (key == null)
            throw new IllegalArgumentException("key cannot be null.");
        return put_internal(key, value);
    }

    private V put_internal(K key, V value) {
        K[] keyTable = this.keyTable;

        // Check for existing keys.
        int hashCode = key.hashCode();
        int index1 = hashCode & mask;
        K key1 = keyTable[index1];
        if (key.equals(key1)) {
            V oldValue = valueTable[index1];
            valueTable[index1] = value;
            return oldValue;
        }

        int index2 = hash2(hashCode);
        K key2 = keyTable[index2];
        if (key.equals(key2)) {
            V oldValue = valueTable[index2];
            valueTable[index2] = value;
            return oldValue;
        }

        int index3 = hash3(hashCode);
        K key3 = keyTable[index3];
        if (key.equals(key3)) {
            V oldValue = valueTable[index3];
            valueTable[index3] = value;
            return oldValue;
        }

        // Update key in the stash.
        for (int i = capacity, n = i + stashSize; i < n; i++) {
            if (key.equals(keyTable[i])) {
                V oldValue = valueTable[i];
                valueTable[i] = value;
                return oldValue;
            }
        }

        // Check for empty buckets.
        if (key1 == null) {
            keyTable[index1] = key;
            valueTable[index1] = value;
            if (size++ >= threshold)
                resize(capacity << 1);
            return null;
        }

        if (key2 == null) {
            keyTable[index2] = key;
            valueTable[index2] = value;
            if (size++ >= threshold)
                resize(capacity << 1);
            return null;
        }

        if (key3 == null) {
            keyTable[index3] = key;
            valueTable[index3] = value;
            if (size++ >= threshold)
                resize(capacity << 1);
            return null;
        }

        push(key, value, index1, key1, index2, key2, index3, key3);
        return null;
    }

    public void putAll(ObjectMap<K, V> map) {
        ensureCapacity(map.size);
        for (Entry<K, V> entry : map)
            put(entry.key, entry.value);
    }

    /** Skips checks for existing keys. */
    private void putResize(K key, V value) {
        // Check for empty buckets.
        int hashCode = key.hashCode();
        int index1 = hashCode & mask;
        K key1 = keyTable[index1];
        if (key1 == null) {
            keyTable[index1] = key;
            valueTable[index1] = value;
            if (size++ >= threshold)
                resize(capacity << 1);
            return;
        }

        int index2 = hash2(hashCode);
        K key2 = keyTable[index2];
        if (key2 == null) {
            keyTable[index2] = key;
            valueTable[index2] = value;
            if (size++ >= threshold)
                resize(capacity << 1);
            return;
        }

        int index3 = hash3(hashCode);
        K key3 = keyTable[index3];
        if (key3 == null) {
            keyTable[index3] = key;
            valueTable[index3] = value;
            if (size++ >= threshold)
                resize(capacity << 1);
            return;
        }

        push(key, value, index1, key1, index2, key2, index3, key3);
    }

    private void push(K insertKey, V insertValue, int index1, K key1, int index2, K key2, int index3, K key3) {
        K[] keyTable = this.keyTable;
        V[] valueTable = this.valueTable;
        int mask = this.mask;

        // Push keys until an empty bucket is found.
        K evictedKey;
        V evictedValue;
        int i = 0, pushIterations = this.pushIterations;
        do {
            // Replace the key and value for one of the hashes.
            switch (MathUtils.random(2)) {
            case 0:
                evictedKey = key1;
                evictedValue = valueTable[index1];
                keyTable[index1] = insertKey;
                valueTable[index1] = insertValue;
                break;
            case 1:
                evictedKey = key2;
                evictedValue = valueTable[index2];
                keyTable[index2] = insertKey;
                valueTable[index2] = insertValue;
                break;
            default:
                evictedKey = key3;
                evictedValue = valueTable[index3];
                keyTable[index3] = insertKey;
                valueTable[index3] = insertValue;
                break;
            }

            // If the evicted key hashes to an empty bucket, put it there and stop.
            int hashCode = evictedKey.hashCode();
            index1 = hashCode & mask;
            key1 = keyTable[index1];
            if (key1 == null) {
                keyTable[index1] = evictedKey;
                valueTable[index1] = evictedValue;
                if (size++ >= threshold)
                    resize(capacity << 1);
                return;
            }

            index2 = hash2(hashCode);
            key2 = keyTable[index2];
            if (key2 == null) {
                keyTable[index2] = evictedKey;
                valueTable[index2] = evictedValue;
                if (size++ >= threshold)
                    resize(capacity << 1);
                return;
            }

            index3 = hash3(hashCode);
            key3 = keyTable[index3];
            if (key3 == null) {
                keyTable[index3] = evictedKey;
                valueTable[index3] = evictedValue;
                if (size++ >= threshold)
                    resize(capacity << 1);
                return;
            }

            if (++i == pushIterations)
                break;

            insertKey = evictedKey;
            insertValue = evictedValue;
        } while (true);

        putStash(evictedKey, evictedValue);
    }

    private void putStash(K key, V value) {
        if (stashSize == stashCapacity) {
            // Too many pushes occurred and the stash is full, increase the table size.
            resize(capacity << 1);
            put_internal(key, value);
            return;
        }
        // Store key in the stash.
        int index = capacity + stashSize;
        keyTable[index] = key;
        valueTable[index] = value;
        stashSize++;
        size++;
    }

    public V get(K key) {
        int hashCode = key.hashCode();
        int index = hashCode & mask;
        if (!key.equals(keyTable[index])) {
            index = hash2(hashCode);
            if (!key.equals(keyTable[index])) {
                index = hash3(hashCode);
                if (!key.equals(keyTable[index]))
                    return getStash(key);
            }
        }
        return valueTable[index];
    }

    private V getStash(K key) {
        K[] keyTable = this.keyTable;
        for (int i = capacity, n = i + stashSize; i < n; i++)
            if (key.equals(keyTable[i]))
                return valueTable[i];
        return null;
    }

    /** Returns the value for the specified key, or the default value if the key is not in the map. */
    public V get(K key, V defaultValue) {
        int hashCode = key.hashCode();
        int index = hashCode & mask;
        if (!key.equals(keyTable[index])) {
            index = hash2(hashCode);
            if (!key.equals(keyTable[index])) {
                index = hash3(hashCode);
                if (!key.equals(keyTable[index]))
                    return getStash(key, defaultValue);
            }
        }
        return valueTable[index];
    }

    private V getStash(K key, V defaultValue) {
        K[] keyTable = this.keyTable;
        for (int i = capacity, n = i + stashSize; i < n; i++)
            if (key.equals(keyTable[i]))
                return valueTable[i];
        return defaultValue;
    }

    public V remove(K key) {
        int hashCode = key.hashCode();
        int index = hashCode & mask;
        if (key.equals(keyTable[index])) {
            keyTable[index] = null;
            V oldValue = valueTable[index];
            valueTable[index] = null;
            size--;
            return oldValue;
        }

        index = hash2(hashCode);
        if (key.equals(keyTable[index])) {
            keyTable[index] = null;
            V oldValue = valueTable[index];
            valueTable[index] = null;
            size--;
            return oldValue;
        }

        index = hash3(hashCode);
        if (key.equals(keyTable[index])) {
            keyTable[index] = null;
            V oldValue = valueTable[index];
            valueTable[index] = null;
            size--;
            return oldValue;
        }

        return removeStash(key);
    }

    V removeStash(K key) {
        K[] keyTable = this.keyTable;
        for (int i = capacity, n = i + stashSize; i < n; i++) {
            if (key.equals(keyTable[i])) {
                V oldValue = valueTable[i];
                removeStashIndex(i);
                size--;
                return oldValue;
            }
        }
        return null;
    }

    void removeStashIndex(int index) {
        // If the removed location was not last, move the last tuple to the removed location.
        stashSize--;
        int lastIndex = capacity + stashSize;
        if (index < lastIndex) {
            keyTable[index] = keyTable[lastIndex];
            valueTable[index] = valueTable[lastIndex];
            valueTable[lastIndex] = null;
        } else
            valueTable[index] = null;
    }

    /** Reduces the size of the backing arrays to be the specified capacity or less. If the capacity is already less, nothing is
     * done. If the map contains more items than the specified capacity, the next highest power of two capacity is used instead. */
    public void shrink(int maximumCapacity) {
        if (maximumCapacity < 0)
            throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity);
        if (size > maximumCapacity)
            maximumCapacity = size;
        if (capacity <= maximumCapacity)
            return;
        maximumCapacity = MathUtils.nextPowerOfTwo(maximumCapacity);
        resize(maximumCapacity);
    }

    /** Clears the map and reduces the size of the backing arrays to be the specified capacity if they are larger. */
    public void clear(int maximumCapacity) {
        if (capacity <= maximumCapacity) {
            clear();
            return;
        }
        size = 0;
        resize(maximumCapacity);
    }

    public void clear() {
        if (size == 0)
            return;
        K[] keyTable = this.keyTable;
        V[] valueTable = this.valueTable;
        for (int i = capacity + stashSize; i-- > 0;) {
            keyTable[i] = null;
            valueTable[i] = null;
        }
        size = 0;
        stashSize = 0;
    }

    /** Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may be
     * an expensive operation.
     * @param identity If true, uses == to compare the specified value with values in the map. If false, uses
     *           {@link #equals(Object)}. */
    public boolean containsValue(Object value, boolean identity) {
        V[] valueTable = this.valueTable;
        if (value == null) {
            K[] keyTable = this.keyTable;
            for (int i = capacity + stashSize; i-- > 0;)
                if (keyTable[i] != null && valueTable[i] == null)
                    return true;
        } else if (identity) {
            for (int i = capacity + stashSize; i-- > 0;)
                if (valueTable[i] == value)
                    return true;
        } else {
            for (int i = capacity + stashSize; i-- > 0;)
                if (value.equals(valueTable[i]))
                    return true;
        }
        return false;
    }

    public boolean containsKey(K key) {
        int hashCode = key.hashCode();
        int index = hashCode & mask;
        if (!key.equals(keyTable[index])) {
            index = hash2(hashCode);
            if (!key.equals(keyTable[index])) {
                index = hash3(hashCode);
                if (!key.equals(keyTable[index]))
                    return containsKeyStash(key);
            }
        }
        return true;
    }

    private boolean containsKeyStash(K key) {
        K[] keyTable = this.keyTable;
        for (int i = capacity, n = i + stashSize; i < n; i++)
            if (key.equals(keyTable[i]))
                return true;
        return false;
    }

    /** Returns the key for the specified value, or null if it is not in the map. Note this traverses the entire map and compares
     * every value, which may be an expensive operation.
     * @param identity If true, uses == to compare the specified value with values in the map. If false, uses
     *           {@link #equals(Object)}. */
    public K findKey(Object value, boolean identity) {
        V[] valueTable = this.valueTable;
        if (value == null) {
            K[] keyTable = this.keyTable;
            for (int i = capacity + stashSize; i-- > 0;)
                if (keyTable[i] != null && valueTable[i] == null)
                    return keyTable[i];
        } else if (identity) {
            for (int i = capacity + stashSize; i-- > 0;)
                if (valueTable[i] == value)
                    return keyTable[i];
        } else {
            for (int i = capacity + stashSize; i-- > 0;)
                if (value.equals(valueTable[i]))
                    return keyTable[i];
        }
        return null;
    }

    /** Increases the size of the backing array to accommodate the specified number of additional items. Useful before adding many
     * items to avoid multiple backing array resizes. */
    public void ensureCapacity(int additionalCapacity) {
        int sizeNeeded = size + additionalCapacity;
        if (sizeNeeded >= threshold)
            resize(MathUtils.nextPowerOfTwo((int) (sizeNeeded / loadFactor)));
    }

    private void resize(int newSize) {
        int oldEndIndex = capacity + stashSize;

        capacity = newSize;
        threshold = (int) (newSize * loadFactor);
        mask = newSize - 1;
        hashShift = 31 - Integer.numberOfTrailingZeros(newSize);
        stashCapacity = Math.max(3, (int) Math.ceil(Math.log(newSize)) * 2);
        pushIterations = Math.max(Math.min(newSize, 8), (int) Math.sqrt(newSize) / 8);

        K[] oldKeyTable = keyTable;
        V[] oldValueTable = valueTable;

        keyTable = (K[]) new Object[newSize + stashCapacity];
        valueTable = (V[]) new Object[newSize + stashCapacity];

        int oldSize = size;
        size = 0;
        stashSize = 0;
        if (oldSize > 0) {
            for (int i = 0; i < oldEndIndex; i++) {
                K key = oldKeyTable[i];
                if (key != null)
                    putResize(key, oldValueTable[i]);
            }
        }
    }

    private int hash2(int h) {
        h *= PRIME2;
        return (h ^ h >>> hashShift) & mask;
    }

    private int hash3(int h) {
        h *= PRIME3;
        return (h ^ h >>> hashShift) & mask;
    }

    public String toString(String separator) {
        return toString(separator, false);
    }

    public String toString() {
        return toString(", ", true);
    }

    private String toString(String separator, boolean braces) {
        if (size == 0)
            return braces ? "{}" : "";
        StringBuilder buffer = new StringBuilder(32);
        if (braces)
            buffer.append('{');
        K[] keyTable = this.keyTable;
        V[] valueTable = this.valueTable;
        int i = keyTable.length;
        while (i-- > 0) {
            K key = keyTable[i];
            if (key == null)
                continue;
            buffer.append(key);
            buffer.append('=');
            buffer.append(valueTable[i]);
            break;
        }
        while (i-- > 0) {
            K key = keyTable[i];
            if (key == null)
                continue;
            buffer.append(separator);
            buffer.append(key);
            buffer.append('=');
            buffer.append(valueTable[i]);
        }
        if (braces)
            buffer.append('}');
        return buffer.toString();
    }

    public Iterator<Entry<K, V>> iterator() {
        return entries();
    }

    /** Returns an iterator for the entries in the map. Remove is supported. Note that the same iterator instance is returned each
     * time this method is called. Use the {@link Entries} constructor for nested or multithreaded iteration. */
    public Entries<K, V> entries() {
        if (entries1 == null) {
            entries1 = new Entries(this);
            entries2 = new Entries(this);
        }
        if (!entries1.valid) {
            entries1.reset();
            entries1.valid = true;
            entries2.valid = false;
            return entries1;
        }
        entries2.reset();
        entries2.valid = true;
        entries1.valid = false;
        return entries2;
    }

    /** Returns an iterator for the values in the map. Remove is supported. Note that the same iterator instance is returned each
     * time this method is called. Use the {@link Values} constructor for nested or multithreaded iteration. */
    public Values<V> values() {
        if (values1 == null) {
            values1 = new Values(this);
            values2 = new Values(this);
        }
        if (!values1.valid) {
            values1.reset();
            values1.valid = true;
            values2.valid = false;
            return values1;
        }
        values2.reset();
        values2.valid = true;
        values1.valid = false;
        return values2;
    }

    /** Returns an iterator for the keys in the map. Remove is supported. Note that the same iterator instance is returned each time
     * this method is called. Use the {@link Keys} constructor for nested or multithreaded iteration. */
    public Keys<K> keys() {
        if (keys1 == null) {
            keys1 = new Keys(this);
            keys2 = new Keys(this);
        }
        if (!keys1.valid) {
            keys1.reset();
            keys1.valid = true;
            keys2.valid = false;
            return keys1;
        }
        keys2.reset();
        keys2.valid = true;
        keys1.valid = false;
        return keys2;
    }

    static public class Entry<K, V> {
        public K key;
        public V value;

        public String toString() {
            return key + "=" + value;
        }
    }

    static private abstract class MapIterator<K, V, I> implements Iterable<I>, Iterator<I> {
        public boolean hasNext;

        final ObjectMap<K, V> map;
        int nextIndex, currentIndex;
        boolean valid = true;

        public MapIterator(ObjectMap<K, V> map) {
            this.map = map;
            reset();
        }

        public void reset() {
            currentIndex = -1;
            nextIndex = -1;
            findNextIndex();
        }

        void findNextIndex() {
            hasNext = false;
            K[] keyTable = map.keyTable;
            for (int n = map.capacity + map.stashSize; ++nextIndex < n;) {
                if (keyTable[nextIndex] != null) {
                    hasNext = true;
                    break;
                }
            }
        }

        public void remove() {
            if (currentIndex < 0)
                throw new IllegalStateException("next must be called before remove.");
            if (currentIndex >= map.capacity) {
                map.removeStashIndex(currentIndex);
                nextIndex = currentIndex - 1;
                findNextIndex();
            } else {
                map.keyTable[currentIndex] = null;
                map.valueTable[currentIndex] = null;
            }
            currentIndex = -1;
            map.size--;
        }
    }

    static public class Entries<K, V> extends MapIterator<K, V, Entry<K, V>> {
        Entry<K, V> entry = new Entry();

        public Entries(ObjectMap<K, V> map) {
            super(map);
        }

        /** Note the same entry instance is returned each time this method is called. */
        public Entry<K, V> next() {
            if (!hasNext)
                throw new NoSuchElementException();
            if (!valid)
                throw new GdxRuntimeException("#iterator() cannot be used nested.");
            K[] keyTable = map.keyTable;
            entry.key = keyTable[nextIndex];
            entry.value = map.valueTable[nextIndex];
            currentIndex = nextIndex;
            findNextIndex();
            return entry;
        }

        public boolean hasNext() {
            if (!valid)
                throw new GdxRuntimeException("#iterator() cannot be used nested.");
            return hasNext;
        }

        public Iterator<Entry<K, V>> iterator() {
            return this;
        }
    }

    static public class Values<V> extends MapIterator<Object, V, V> {
        public Values(ObjectMap<?, V> map) {
            super((ObjectMap<Object, V>) map);
        }

        public boolean hasNext() {
            if (!valid)
                throw new GdxRuntimeException("#iterator() cannot be used nested.");
            return hasNext;
        }

        public V next() {
            if (!hasNext)
                throw new NoSuchElementException();
            if (!valid)
                throw new GdxRuntimeException("#iterator() cannot be used nested.");
            V value = map.valueTable[nextIndex];
            currentIndex = nextIndex;
            findNextIndex();
            return value;
        }

        public Iterator<V> iterator() {
            return this;
        }

        /** Returns a new array containing the remaining values. */
        public Array<V> toArray() {
            return toArray(new Array(true, map.size));
        }

        /** Adds the remaining values to the specified array. */
        public Array<V> toArray(Array<V> array) {
            while (hasNext)
                array.add(next());
            return array;
        }
    }

    static public class Keys<K> extends MapIterator<K, Object, K> {
        public Keys(ObjectMap<K, ?> map) {
            super((ObjectMap<K, Object>) map);
        }

        public boolean hasNext() {
            if (!valid)
                throw new GdxRuntimeException("#iterator() cannot be used nested.");
            return hasNext;
        }

        public K next() {
            if (!hasNext)
                throw new NoSuchElementException();
            if (!valid)
                throw new GdxRuntimeException("#iterator() cannot be used nested.");
            K key = map.keyTable[nextIndex];
            currentIndex = nextIndex;
            findNextIndex();
            return key;
        }

        public Iterator<K> iterator() {
            return this;
        }

        /** Returns a new array containing the remaining keys. */
        public Array<K> toArray() {
            return toArray(new Array(true, map.size));
        }

        /** Adds the remaining keys to the array. */
        public Array<K> toArray(Array<K> array) {
            while (hasNext)
                array.add(next());
            return array;
        }
    }
}