com.badlogic.gdx.math.Affine2.java Source code

Java tutorial

Introduction

Here is the source code for com.badlogic.gdx.math.Affine2.java

Source

/*******************************************************************************
 * Copyright 2011 See AUTHORS file.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package com.badlogic.gdx.math;

import java.io.Serializable;

import com.badlogic.gdx.utils.GdxRuntimeException;

/** A specialized 3x3 matrix that can represent sequences of 2D translations, scales, flips, rotations, and shears. <a
 * href="http://en.wikipedia.org/wiki/Affine_transformation">Affine transformations</a> preserve straight lines, and
 * parallel lines remain parallel after the transformation. Operations on affine matrices are faster because the last row can
 * always be assumed (0, 0, 1).
 *
 * @author vmilea */
public final class Affine2 implements Serializable {
    private static final long serialVersionUID = 1524569123485049187L;

    public float m00 = 1, m01 = 0, m02 = 0;
    public float m10 = 0, m11 = 1, m12 = 0;

    // constant: m21 = 0, m21 = 1, m22 = 1

    /** Constructs an identity matrix. */
    public Affine2() {
    }

    /** Constructs a matrix from the given affine matrix.
     *
     * @param other The affine matrix to copy. This matrix will not be modified. */
    public Affine2(Affine2 other) {
        set(other);
    }

    /** Sets this matrix to the identity matrix
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 idt() {
        m00 = 1;
        m01 = 0;
        m02 = 0;
        m10 = 0;
        m11 = 1;
        m12 = 0;
        return this;
    }

    /** Copies the values from the provided affine matrix to this matrix.
     * @param other The affine matrix to copy.
     * @return This matrix for the purposes of chaining. */
    public Affine2 set(Affine2 other) {
        m00 = other.m00;
        m01 = other.m01;
        m02 = other.m02;
        m10 = other.m10;
        m11 = other.m11;
        m12 = other.m12;
        return this;
    }

    /** Copies the values from the provided matrix to this matrix.
     * @param matrix The matrix to copy, assumed to be an affine transformation.
     * @return This matrix for the purposes of chaining. */
    public Affine2 set(Matrix3 matrix) {
        float[] other = matrix.val;

        m00 = other[Matrix3.M00];
        m01 = other[Matrix3.M01];
        m02 = other[Matrix3.M02];
        m10 = other[Matrix3.M10];
        m11 = other[Matrix3.M11];
        m12 = other[Matrix3.M12];
        return this;
    }

    /** Copies the 2D transformation components from the provided 4x4 matrix. The values are mapped as follows:
     *
     * <pre>
     *      [  M00  M01  M03  ]
     *      [  M10  M11  M13  ]
     *      [   0    0    1   ]
     * </pre>
     * @param matrix The source matrix, assumed to be an affine transformation within XY plane. This matrix will not be modified.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 set(Matrix4 matrix) {
        float[] other = matrix.val;

        m00 = other[Matrix4.M00];
        m01 = other[Matrix4.M01];
        m02 = other[Matrix4.M03];
        m10 = other[Matrix4.M10];
        m11 = other[Matrix4.M11];
        m12 = other[Matrix4.M13];
        return this;
    }

    /** Sets this matrix to a translation matrix.
     * @param x The translation in x
     * @param y The translation in y
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToTranslation(float x, float y) {
        m00 = 1;
        m01 = 0;
        m02 = x;
        m10 = 0;
        m11 = 1;
        m12 = y;
        return this;
    }

    /** Sets this matrix to a translation matrix.
     * @param trn The translation vector.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToTranslation(Vector2 trn) {
        return setToTranslation(trn.x, trn.y);
    }

    /** Sets this matrix to a scaling matrix.
     * @param scaleX The scale in x.
     * @param scaleY The scale in y.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToScaling(float scaleX, float scaleY) {
        m00 = scaleX;
        m01 = 0;
        m02 = 0;
        m10 = 0;
        m11 = scaleY;
        m12 = 0;
        return this;
    }

    /** Sets this matrix to a scaling matrix.
     * @param scale The scale vector.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToScaling(Vector2 scale) {
        return setToScaling(scale.x, scale.y);
    }

    /** Sets this matrix to a rotation matrix that will rotate any vector in counter-clockwise direction around the z-axis.
     * @param degrees The angle in degrees.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToRotation(float degrees) {
        float cos = MathUtils.cosDeg(degrees);
        float sin = MathUtils.sinDeg(degrees);

        m00 = cos;
        m01 = -sin;
        m02 = 0;
        m10 = sin;
        m11 = cos;
        m12 = 0;
        return this;
    }

    /** Sets this matrix to a rotation matrix that will rotate any vector in counter-clockwise direction around the z-axis.
     * @param radians The angle in radians.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToRotationRad(float radians) {
        float cos = MathUtils.cos(radians);
        float sin = MathUtils.sin(radians);

        m00 = cos;
        m01 = -sin;
        m02 = 0;
        m10 = sin;
        m11 = cos;
        m12 = 0;
        return this;
    }

    /** Sets this matrix to a rotation matrix that will rotate any vector in counter-clockwise direction around the z-axis.
     * @param cos The angle cosine.
     * @param sin The angle sine.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToRotation(float cos, float sin) {
        m00 = cos;
        m01 = -sin;
        m02 = 0;
        m10 = sin;
        m11 = cos;
        m12 = 0;
        return this;
    }

    /** Sets this matrix to a shearing matrix.
     * @param shearX The shear in x direction.
     * @param shearY The shear in y direction.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToShearing(float shearX, float shearY) {
        m00 = 1;
        m01 = shearX;
        m02 = 0;
        m10 = shearY;
        m11 = 1;
        m12 = 0;
        return this;
    }

    /** Sets this matrix to a shearing matrix.
     * @param shear The shear vector.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToShearing(Vector2 shear) {
        return setToShearing(shear.x, shear.y);
    }

    /** Sets this matrix to a concatenation of translation, rotation and scale. It is a more efficient form for:
     * <code>idt().translate(x, y).rotate(degrees).scale(scaleX, scaleY)</code>
     * @param x The translation in x.
     * @param y The translation in y.
     * @param degrees The angle in degrees.
     * @param scaleX The scale in y.
     * @param scaleY The scale in x.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToTrnRotScl(float x, float y, float degrees, float scaleX, float scaleY) {
        m02 = x;
        m12 = y;

        if (degrees == 0) {
            m00 = scaleX;
            m01 = 0;
            m10 = 0;
            m11 = scaleY;
        } else {
            float sin = MathUtils.sinDeg(degrees);
            float cos = MathUtils.cosDeg(degrees);

            m00 = cos * scaleX;
            m01 = -sin * scaleY;
            m10 = sin * scaleX;
            m11 = cos * scaleY;
        }
        return this;
    }

    /** Sets this matrix to a concatenation of translation, rotation and scale. It is a more efficient form for:
     * <code>idt().translate(trn).rotate(degrees).scale(scale)</code>
     * @param trn The translation vector.
     * @param degrees The angle in degrees.
     * @param scale The scale vector.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToTrnRotScl(Vector2 trn, float degrees, Vector2 scale) {
        return setToTrnRotScl(trn.x, trn.y, degrees, scale.x, scale.y);
    }

    /** Sets this matrix to a concatenation of translation, rotation and scale. It is a more efficient form for:
     * <code>idt().translate(x, y).rotateRad(radians).scale(scaleX, scaleY)</code>
     * @param x The translation in x.
     * @param y The translation in y.
     * @param radians The angle in radians.
     * @param scaleX The scale in y.
     * @param scaleY The scale in x.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToTrnRotRadScl(float x, float y, float radians, float scaleX, float scaleY) {
        m02 = x;
        m12 = y;

        if (radians == 0) {
            m00 = scaleX;
            m01 = 0;
            m10 = 0;
            m11 = scaleY;
        } else {
            float sin = MathUtils.sin(radians);
            float cos = MathUtils.cos(radians);

            m00 = cos * scaleX;
            m01 = -sin * scaleY;
            m10 = sin * scaleX;
            m11 = cos * scaleY;
        }
        return this;
    }

    /** Sets this matrix to a concatenation of translation, rotation and scale. It is a more efficient form for:
     * <code>idt().translate(trn).rotateRad(radians).scale(scale)</code>
     * @param trn The translation vector.
     * @param radians The angle in radians.
     * @param scale The scale vector.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToTrnRotRadScl(Vector2 trn, float radians, Vector2 scale) {
        return setToTrnRotRadScl(trn.x, trn.y, radians, scale.x, scale.y);
    }

    /** Sets this matrix to a concatenation of translation and scale. It is a more efficient form for:
     * <code>idt().translate(x, y).scale(scaleX, scaleY)</code>
     * @param x The translation in x.
     * @param y The translation in y.
     * @param scaleX The scale in y.
     * @param scaleY The scale in x.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToTrnScl(float x, float y, float scaleX, float scaleY) {
        m00 = scaleX;
        m01 = 0;
        m02 = x;
        m10 = 0;
        m11 = scaleY;
        m12 = y;
        return this;
    }

    /** Sets this matrix to a concatenation of translation and scale. It is a more efficient form for:
     * <code>idt().translate(trn).scale(scale)</code>
     * @param trn The translation vector.
     * @param scale The scale vector.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToTrnScl(Vector2 trn, Vector2 scale) {
        return setToTrnScl(trn.x, trn.y, scale.x, scale.y);
    }

    /** Sets this matrix to the product of two matrices.
     * @param l Left matrix.
     * @param r Right matrix.
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 setToProduct(Affine2 l, Affine2 r) {
        m00 = l.m00 * r.m00 + l.m01 * r.m10;
        m01 = l.m00 * r.m01 + l.m01 * r.m11;
        m02 = l.m00 * r.m02 + l.m01 * r.m12 + l.m02;
        m10 = l.m10 * r.m00 + l.m11 * r.m10;
        m11 = l.m10 * r.m01 + l.m11 * r.m11;
        m12 = l.m10 * r.m02 + l.m11 * r.m12 + l.m12;
        return this;
    }

    /** Inverts this matrix given that the determinant is != 0.
     * @return This matrix for the purpose of chaining operations.
     * @throws GdxRuntimeException if the matrix is singular (not invertible) */
    public Affine2 inv() {
        float det = det();
        if (det == 0)
            throw new GdxRuntimeException("Can't invert a singular affine matrix");

        float invDet = 1.0f / det;

        float tmp00 = m11;
        float tmp01 = -m01;
        float tmp02 = m01 * m12 - m11 * m02;
        float tmp10 = -m10;
        float tmp11 = m00;
        float tmp12 = m10 * m02 - m00 * m12;

        m00 = invDet * tmp00;
        m01 = invDet * tmp01;
        m02 = invDet * tmp02;
        m10 = invDet * tmp10;
        m11 = invDet * tmp11;
        m12 = invDet * tmp12;
        return this;
    }

    /** Postmultiplies this matrix with the provided matrix and stores the result in this matrix. For example:
     *
     * <pre>
     * A.mul(B) results in A := AB
     * </pre>
     * @param other Matrix to multiply by.
     * @return This matrix for the purpose of chaining operations together. */
    public Affine2 mul(Affine2 other) {
        float tmp00 = m00 * other.m00 + m01 * other.m10;
        float tmp01 = m00 * other.m01 + m01 * other.m11;
        float tmp02 = m00 * other.m02 + m01 * other.m12 + m02;
        float tmp10 = m10 * other.m00 + m11 * other.m10;
        float tmp11 = m10 * other.m01 + m11 * other.m11;
        float tmp12 = m10 * other.m02 + m11 * other.m12 + m12;

        m00 = tmp00;
        m01 = tmp01;
        m02 = tmp02;
        m10 = tmp10;
        m11 = tmp11;
        m12 = tmp12;
        return this;
    }

    /** Premultiplies this matrix with the provided matrix and stores the result in this matrix. For example:
     *
     * <pre>
     * A.preMul(B) results in A := BA
     * </pre>
     * @param other The other Matrix to multiply by
     * @return This matrix for the purpose of chaining operations. */
    public Affine2 preMul(Affine2 other) {
        float tmp00 = other.m00 * m00 + other.m01 * m10;
        float tmp01 = other.m00 * m01 + other.m01 * m11;
        float tmp02 = other.m00 * m02 + other.m01 * m12 + other.m02;
        float tmp10 = other.m10 * m00 + other.m11 * m10;
        float tmp11 = other.m10 * m01 + other.m11 * m11;
        float tmp12 = other.m10 * m02 + other.m11 * m12 + other.m12;

        m00 = tmp00;
        m01 = tmp01;
        m02 = tmp02;
        m10 = tmp10;
        m11 = tmp11;
        m12 = tmp12;
        return this;
    }

    /** Postmultiplies this matrix by a translation matrix.
     * @param x The x-component of the translation vector.
     * @param y The y-component of the translation vector.
     * @return This matrix for the purpose of chaining. */
    public Affine2 translate(float x, float y) {
        m02 += m00 * x + m01 * y;
        m12 += m10 * x + m11 * y;
        return this;
    }

    /** Postmultiplies this matrix by a translation matrix.
     * @param trn The translation vector.
     * @return This matrix for the purpose of chaining. */
    public Affine2 translate(Vector2 trn) {
        return translate(trn.x, trn.y);
    }

    /** Premultiplies this matrix by a translation matrix.
     * @param x The x-component of the translation vector.
     * @param y The y-component of the translation vector.
     * @return This matrix for the purpose of chaining. */
    public Affine2 preTranslate(float x, float y) {
        m02 += x;
        m12 += y;
        return this;
    }

    /** Premultiplies this matrix by a translation matrix.
     * @param trn The translation vector.
     * @return This matrix for the purpose of chaining. */
    public Affine2 preTranslate(Vector2 trn) {
        return preTranslate(trn.x, trn.y);
    }

    /** Postmultiplies this matrix with a scale matrix.
     * @param scaleX The scale in the x-axis.
     * @param scaleY The scale in the y-axis.
     * @return This matrix for the purpose of chaining. */
    public Affine2 scale(float scaleX, float scaleY) {
        m00 *= scaleX;
        m01 *= scaleY;
        m10 *= scaleX;
        m11 *= scaleY;
        return this;
    }

    /** Postmultiplies this matrix with a scale matrix.
     * @param scale The scale vector.
     * @return This matrix for the purpose of chaining. */
    public Affine2 scale(Vector2 scale) {
        return scale(scale.x, scale.y);
    }

    /** Premultiplies this matrix with a scale matrix.
     * @param scaleX The scale in the x-axis.
     * @param scaleY The scale in the y-axis.
     * @return This matrix for the purpose of chaining. */
    public Affine2 preScale(float scaleX, float scaleY) {
        m00 *= scaleX;
        m01 *= scaleX;
        m02 *= scaleX;
        m10 *= scaleY;
        m11 *= scaleY;
        m12 *= scaleY;
        return this;
    }

    /** Premultiplies this matrix with a scale matrix.
     * @param scale The scale vector.
     * @return This matrix for the purpose of chaining. */
    public Affine2 preScale(Vector2 scale) {
        return preScale(scale.x, scale.y);
    }

    /** Postmultiplies this matrix with a (counter-clockwise) rotation matrix.
     * @param degrees The angle in degrees
     * @return This matrix for the purpose of chaining. */
    public Affine2 rotate(float degrees) {
        if (degrees == 0)
            return this;

        float cos = MathUtils.cosDeg(degrees);
        float sin = MathUtils.sinDeg(degrees);

        float tmp00 = m00 * cos + m01 * sin;
        float tmp01 = m00 * -sin + m01 * cos;
        float tmp10 = m10 * cos + m11 * sin;
        float tmp11 = m10 * -sin + m11 * cos;

        m00 = tmp00;
        m01 = tmp01;
        m10 = tmp10;
        m11 = tmp11;
        return this;
    }

    /** Postmultiplies this matrix with a (counter-clockwise) rotation matrix.
     * @param radians The angle in radians
     * @return This matrix for the purpose of chaining. */
    public Affine2 rotateRad(float radians) {
        if (radians == 0)
            return this;

        float cos = MathUtils.cos(radians);
        float sin = MathUtils.sin(radians);

        float tmp00 = m00 * cos + m01 * sin;
        float tmp01 = m00 * -sin + m01 * cos;
        float tmp10 = m10 * cos + m11 * sin;
        float tmp11 = m10 * -sin + m11 * cos;

        m00 = tmp00;
        m01 = tmp01;
        m10 = tmp10;
        m11 = tmp11;
        return this;
    }

    /** Premultiplies this matrix with a (counter-clockwise) rotation matrix.
     * @param degrees The angle in degrees
     * @return This matrix for the purpose of chaining. */
    public Affine2 preRotate(float degrees) {
        if (degrees == 0)
            return this;

        float cos = MathUtils.cosDeg(degrees);
        float sin = MathUtils.sinDeg(degrees);

        float tmp00 = cos * m00 - sin * m10;
        float tmp01 = cos * m01 - sin * m11;
        float tmp02 = cos * m02 - sin * m12;
        float tmp10 = sin * m00 + cos * m10;
        float tmp11 = sin * m01 + cos * m11;
        float tmp12 = sin * m02 + cos * m12;

        m00 = tmp00;
        m01 = tmp01;
        m02 = tmp02;
        m10 = tmp10;
        m11 = tmp11;
        m12 = tmp12;
        return this;
    }

    /** Premultiplies this matrix with a (counter-clockwise) rotation matrix.
     * @param radians The angle in radians
     * @return This matrix for the purpose of chaining. */
    public Affine2 preRotateRad(float radians) {
        if (radians == 0)
            return this;

        float cos = MathUtils.cos(radians);
        float sin = MathUtils.sin(radians);

        float tmp00 = cos * m00 - sin * m10;
        float tmp01 = cos * m01 - sin * m11;
        float tmp02 = cos * m02 - sin * m12;
        float tmp10 = sin * m00 + cos * m10;
        float tmp11 = sin * m01 + cos * m11;
        float tmp12 = sin * m02 + cos * m12;

        m00 = tmp00;
        m01 = tmp01;
        m02 = tmp02;
        m10 = tmp10;
        m11 = tmp11;
        m12 = tmp12;
        return this;
    }

    /** Postmultiplies this matrix by a shear matrix.
     * @param shearX The shear in x direction.
     * @param shearY The shear in y direction.
     * @return This matrix for the purpose of chaining. */
    public Affine2 shear(float shearX, float shearY) {
        float tmp0 = m00 + shearY * m01;
        float tmp1 = m01 + shearX * m00;
        m00 = tmp0;
        m01 = tmp1;

        tmp0 = m10 + shearY * m11;
        tmp1 = m11 + shearX * m10;
        m10 = tmp0;
        m11 = tmp1;
        return this;
    }

    /** Postmultiplies this matrix by a shear matrix.
     * @param shear The shear vector.
     * @return This matrix for the purpose of chaining. */
    public Affine2 shear(Vector2 shear) {
        return shear(shear.x, shear.y);
    }

    /** Premultiplies this matrix by a shear matrix.
     * @param shearX The shear in x direction.
     * @param shearY The shear in y direction.
     * @return This matrix for the purpose of chaining. */
    public Affine2 preShear(float shearX, float shearY) {
        float tmp00 = m00 + shearX * m10;
        float tmp01 = m01 + shearX * m11;
        float tmp02 = m02 + shearX * m12;
        float tmp10 = m10 + shearY * m00;
        float tmp11 = m11 + shearY * m01;
        float tmp12 = m12 + shearY * m02;

        m00 = tmp00;
        m01 = tmp01;
        m02 = tmp02;
        m10 = tmp10;
        m11 = tmp11;
        m12 = tmp12;
        return this;
    }

    /** Premultiplies this matrix by a shear matrix.
     * @param shear The shear vector.
     * @return This matrix for the purpose of chaining. */
    public Affine2 preShear(Vector2 shear) {
        return preShear(shear.x, shear.y);
    }

    /** Calculates the determinant of the matrix.
     * @return The determinant of this matrix. */
    public float det() {
        return m00 * m11 - m01 * m10;
    }

    /** Get the x-y translation component of the matrix.
     * @param position Output vector.
     * @return Filled position. */
    public Vector2 getTranslation(Vector2 position) {
        position.x = m02;
        position.y = m12;
        return position;
    }

    /** Check if the this is a plain translation matrix.
     * @return True if scale is 1 and rotation is 0. */
    public boolean isTranslation() {
        return (m00 == 1 && m11 == 1 && m01 == 0 && m10 == 0);
    }

    /** Check if this is an indentity matrix.
     * @return True if scale is 1 and rotation is 0. */
    public boolean isIdt() {
        return (m00 == 1 && m02 == 0 && m12 == 0 && m11 == 1 && m01 == 0 && m10 == 0);
    }

    /** Applies the affine transformation on a vector. */
    public void applyTo(Vector2 point) {
        float x = point.x;
        float y = point.y;
        point.x = m00 * x + m01 * y + m02;
        point.y = m10 * x + m11 * y + m12;
    }

    @Override
    public String toString() {
        return "[" + m00 + "|" + m01 + "|" + m02 + "]\n[" + m10 + "|" + m11 + "|" + m12 + "]\n[0.0|0.0|0.1]";
    }
}