com.antbrains.crf.hadoop.ParallelTraining.java Source code

Java tutorial

Introduction

Here is the source code for com.antbrains.crf.hadoop.ParallelTraining.java

Source

/**
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package com.antbrains.crf.hadoop;

import gnu.trove.map.hash.TObjectIntHashMap;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.URI;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.commons.codec.binary.Base64;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import com.antbrains.crf.BESB1B2MTagConvertor;
import com.antbrains.crf.FeatureDict;
import com.antbrains.crf.Instance;
import com.antbrains.crf.SgdCrf;
import com.antbrains.crf.TagConvertor;
import com.antbrains.crf.Template;
import com.antbrains.crf.TrainingDataSet;
import com.antbrains.crf.TrainingParams;
import com.antbrains.crf.TrainingProgress;
import com.antbrains.crf.TrainingWeights;
import com.google.gson.Gson;

public class ParallelTraining {

    public static class TrainingMapper extends Mapper<Object, Text, NullWritable, TrainingWeights> {

        private Gson gson = new Gson();
        private TrainingParams params;
        private TrainingWeights weights;
        private List<Instance> instances;
        private TagConvertor tc = new BESB1B2MTagConvertor();
        private int attrNum;

        @Override
        protected void setup(Context context) throws IOException, InterruptedException {
            int iterate = context.getConfiguration().getInt("pt.iterate", 1);
            if (iterate == 1) {
                attrNum = context.getConfiguration().getInt("pt.featureCount", -1);
                weights = new TrainingWeights(null);

                int labelNum = tc.getTagNum();
                weights.setAttributeWeights(new double[labelNum * attrNum]);
                weights.setTransitionWeights(new double[labelNum * labelNum]);
                weights.setBosTransitionWeights(new double[labelNum]);
                weights.setEosTransitionWeights(new double[labelNum]);
                String[] labelTexts = new String[labelNum];
                Iterator<String> iter = tc.getTags().iterator();
                for (int i = 0; i < labelNum; i++) {
                    labelTexts[i] = iter.next();
                }
                weights.setLabelTexts(labelTexts);
                // context.getCounter(TrainingMapper.class.getSimpleName(),
                // ""+(labelNum*attrNum)).increment(1);
            } else {
                // TODO read from hdfs
            }
            // deserialize params
            String s = context.getConfiguration().get("pt.params");
            try {
                params = (TrainingParams) string2Object(s);
            } catch (ClassNotFoundException e) {
                throw new IOException(e);
            }

            instances = new ArrayList<Instance>();
        }

        @Override
        protected void cleanup(final Context context) throws IOException, InterruptedException {
            doSgd(context);
        }

        private void doSgd(final Context context) throws IOException, InterruptedException {
            TrainingDataSet dataSet = new TrainingDataSet();
            dataSet.setInstances(instances);
            dataSet.setLabelNum(tc.getTagNum());
            dataSet.setAttributeNum(attrNum);
            try {
                SgdCrf.train(dataSet, 0, params.getIterationNum(), params, weights, new TrainingProgress() {

                    @Override
                    public void startTraining() {
                        System.out.println(new java.util.Date() + " start training...");
                    }

                    @Override
                    public void finishTraining() {
                        System.out.println(new java.util.Date() + " finish training.");
                    }

                    @Override
                    public void doValidate(String s) {
                        System.out.println(new java.util.Date() + " validate result: ");
                        System.out.println(s);
                    }

                    @Override
                    public void doIter(int iter) {
                        System.out.println(new java.util.Date() + " iter " + iter);
                        context.progress();
                    }
                });
            } catch (Exception e) {
                throw new IOException(e);
            }
            context.write(NullWritable.get(), weights);
        }

        @Override
        public void map(Object key, Text value, final Context context) throws IOException, InterruptedException {
            String s = value.toString().split("\t", 2)[1];
            Instance instance = gson.fromJson(s, Instance.class);
            instances.add(instance);
        }
    }

    public static class TrainingReducer
            extends Reducer<NullWritable, TrainingWeights, NullWritable, TrainingWeights> {
        @Override
        protected void setup(Context context) throws IOException, InterruptedException {

        }

        @Override
        protected void cleanup(final Context context) throws IOException, InterruptedException {

        }

        @Override
        protected void reduce(NullWritable key, Iterable<TrainingWeights> values, Context context)
                throws IOException, InterruptedException {
            TrainingWeights result = null;
            int total = 0;
            for (TrainingWeights weights : values) {
                if (result == null) {
                    result = weights;
                } else {
                    addWeights(result, weights);
                }
                total++;
            }
            if (total > 1) {
                divideWeights(result, total);
            }
            context.write(NullWritable.get(), result);
        }

        private void addWeights(TrainingWeights w1, TrainingWeights w2) {
            addArray(w1.getAttributeWeights(), w2.getAttributeWeights());
            addArray(w1.getBosTransitionWeights(), w2.getBosTransitionWeights());
            addArray(w1.getEosTransitionWeights(), w2.getEosTransitionWeights());
            addArray(w1.getTransitionWeights(), w2.getTransitionWeights());
        }

        private void addArray(double[] arr1, double[] arr2) {
            for (int i = 0; i < arr1.length; i++) {
                arr1[i] += arr2[i];
            }
        }

        private void divideWeights(TrainingWeights w, int total) {
            divArray(w.getAttributeWeights(), total);
            divArray(w.getBosTransitionWeights(), total);
            divArray(w.getEosTransitionWeights(), total);
            divArray(w.getTransitionWeights(), total);
        }

        private void divArray(double[] arr, int total) {
            for (int i = 0; i < arr.length; i++) {
                arr[i] /= total;
            }
        }
    }

    public static String object2String(Object o) throws IOException {
        ByteArrayOutputStream bo = new ByteArrayOutputStream();
        ObjectOutputStream so = new ObjectOutputStream(bo);
        so.writeObject(o);
        so.flush();
        byte[] arr = Base64.encodeBase64(bo.toByteArray());
        return new String(arr, "UTF8");
    }

    public static Object string2Object(String s) throws IOException, ClassNotFoundException {
        byte b[] = s.getBytes("UTF8");
        byte[] bytes = Base64.decodeBase64(b);
        ByteArrayInputStream bi = new ByteArrayInputStream(bytes);
        ObjectInputStream si = new ObjectInputStream(bi);
        return si.readObject();
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length != 4) {
            System.err.println("ParallelTraining <instanceDir> <outDir> <featurecount> <training-params>");
            System.exit(-1);
        }
        int featureCount = Integer.valueOf(otherArgs[2]);
        // conf.set("tc", object2String(tc));

        conf.set("pt.iterate", "1");
        conf.set("pt.featureCount", featureCount + "");

        TrainingParams params = SgdCrf.loadParams(otherArgs[3]);
        System.out.println(new Gson().toJson(params));
        conf.set("pt.params", object2String(params));

        Job job = new Job(conf, ParallelTraining.class.getSimpleName());

        job.setJarByClass(ParallelTraining.class);
        job.setMapperClass(TrainingMapper.class);
        job.setReducerClass(TrainingReducer.class);

        job.setOutputFormatClass(SequenceFileOutputFormat.class);

        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(TrainingWeights.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}