Java tutorial
/******************************************************************************* * Copyright 2015 Analog Devices, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ********************************************************************************/ package com.analog.lyric.dimple.test.solvers.gibbs; import static com.analog.lyric.dimple.model.sugar.ModelSyntacticSugar.*; import static java.util.Objects.*; import static org.junit.Assert.*; import java.util.Random; import org.apache.commons.math3.stat.StatUtils; import org.junit.Test; import com.analog.lyric.dimple.factorfunctions.Normal; import com.analog.lyric.dimple.model.core.FactorGraph; import com.analog.lyric.dimple.model.sugar.ModelSyntacticSugar.CurrentModel; import com.analog.lyric.dimple.model.variables.Real; import com.analog.lyric.dimple.options.DimpleOptions; import com.analog.lyric.dimple.solvers.gibbs.GibbsOptions; import com.analog.lyric.dimple.solvers.gibbs.GibbsReal; import com.analog.lyric.dimple.solvers.gibbs.GibbsSolver; import com.analog.lyric.dimple.solvers.gibbs.GibbsSolverGraph; import com.analog.lyric.dimple.solvers.gibbs.samplers.generic.MHSampler; import com.analog.lyric.dimple.solvers.gibbs.samplers.generic.SliceSampler; import com.analog.lyric.dimple.test.DimpleTestBase; /** * * @since 0.08 * @author Christopher Barber */ public class TestGibbsConjugateSampling extends DimpleTestBase { @Test public void test3() { // Adapted from MATLAB testConjugateSampling.m/test3 Random rand = new Random(42); final double priorMean = 3.0; final double priorPrecision = 0.01; final double dataMean = 10; final double dataPrecision = 0.001; final int numDatapoints = 100; double[] data = new double[numDatapoints]; double dataSum = 0.0; for (int i = 0; i < numDatapoints; ++i) { dataSum += data[i] = dataMean + rand.nextGaussian() * dataPrecision; } final double expectedPrecision = priorPrecision + numDatapoints * dataPrecision; final double expectedStd = 1 / Math.sqrt(expectedPrecision); final double expectedMean = (priorMean * priorPrecision + dataSum * dataPrecision) / expectedPrecision; final FactorGraph fg = new FactorGraph(); Real mean; Real[] x; try (CurrentModel currrent = using(fg)) { mean = real("mean"); mean.setPrior(new Normal(priorMean, priorPrecision)); x = fixed("x", data); addFactor(new Normal(), mean, dataPrecision, x); } fg.setOption(DimpleOptions.randomSeed, 1L); fg.setOption(GibbsOptions.numSamples, 1000); fg.setOption(GibbsOptions.saveAllSamples, true); fg.setOption(GibbsOptions.saveAllScores, true); GibbsSolverGraph sfg = requireNonNull(fg.setSolverFactory(new GibbsSolver())); GibbsReal smean = sfg.getReal(mean); assertEquals("NormalSampler", smean.getSamplerName()); fg.solve(); double[] means = smean.getAllSamples(); assertEquals(expectedMean, StatUtils.mean(means), 0.01); assertEquals(expectedStd, Math.sqrt(StatUtils.variance(means)), .05); // Try again with slice sampler mean.setOption(GibbsOptions.realSampler, SliceSampler.class); fg.setOption(GibbsOptions.numSamples, 2000); fg.solve(); double[] means2 = smean.getAllSamples(); assertEquals("SliceSampler", smean.getSamplerName()); assertEquals("NormalSampler", sfg.getReal(x[0]).getSamplerName()); assertEquals(expectedMean, StatUtils.mean(means2), 0.1); assertEquals(expectedStd, Math.sqrt(StatUtils.variance(means2)), 0.1); // Try again with MH mean.setOption(GibbsOptions.realSampler, MHSampler.class); fg.setOption(GibbsOptions.scansPerSample, 10); fg.setOption(GibbsOptions.numSamples, 1000); fg.solve(); double[] means3 = smean.getAllSamples(); assertEquals("MHSampler", smean.getSamplerName()); assertEquals("NormalSampler", sfg.getReal(x[0]).getSamplerName()); assertEquals(expectedMean, StatUtils.mean(means3), 0.25); assertEquals(expectedStd, Math.sqrt(StatUtils.variance(means3)), 0.25); } }