Java tutorial
/******************************************************************************* * Copyright 2014 Analog Devices, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ********************************************************************************/ package com.analog.lyric.dimple.factorfunctions; import java.util.Map; import org.eclipse.jdt.annotation.Nullable; import com.analog.lyric.dimple.exceptions.DimpleException; import com.analog.lyric.dimple.factorfunctions.core.FactorFunctionUtilities; import com.analog.lyric.dimple.factorfunctions.core.IParametricFactorFunction; import com.analog.lyric.dimple.factorfunctions.core.UnaryFactorFunction; import com.analog.lyric.dimple.model.values.Value; /** * @since 0.06 * @author Jake * * Poisson distribution corresponding to p(k|lambda), where k is the observed number of counts * and lambda is the rate parameter. * * The conjugate prior for lambda is the Gamma distribution * Depending on the solver, it may or may not be necessary to use a * conjugate prior (for the Gibbs solver, for example, it is not). * * The variables in the argument are as follows: * * 1) lambda: the rate parameter * 2) k: the observed number of counts * * The rate parameter may optionally be specified as constants in the constructor. * In this case, it is not included in the list of arguments. */ public class Poisson extends UnaryFactorFunction implements IParametricFactorFunction { private static final long serialVersionUID = 1L; protected double _lambda; protected double _logLambda; protected boolean _lambdaParameterConstant = false; private int _firstDirectedToIndex = 1; /*--------------- * Construction */ public Poisson() { super((String) null); } // For variable lambda public Poisson(double lambda) // For fixed lambda { this(); if (lambda <= 0) throw new DimpleException("lambda must be greater than zero."); _lambda = lambda; _logLambda = Math.log(lambda); _lambdaParameterConstant = true; _firstDirectedToIndex = 0; } /** * Constructs a Poisson distribution with fixed lambda parameter. * @param parameters If this contains an entry under the key "lambda", that will be used for the * corresponding parameter otherwise it will default to 1.0. * @since 0.07 */ public Poisson(Map<String, Object> parameters) { this((double) getOrDefault(parameters, "lambda", 1.0)); } protected Poisson(Poisson other) { super(other); _lambda = other._lambda; _logLambda = other._logLambda; _lambdaParameterConstant = other._lambdaParameterConstant; _firstDirectedToIndex = other._firstDirectedToIndex; } @Override public Poisson clone() { return new Poisson(this); } /*---------------- * IDatum methods */ @Override public boolean objectEquals(@Nullable Object other) { if (this == other) { return true; } if (other instanceof Poisson) { Poisson that = (Poisson) other; return _lambdaParameterConstant == that._lambdaParameterConstant && _lambda == that._lambda && _firstDirectedToIndex == that._firstDirectedToIndex; } return false; } /*------------------------ * FactorFunction methods */ @Override public final double evalEnergy(Value[] arguments) { int index = 0; // First argument of the factor: lambda if (!_lambdaParameterConstant) { _lambda = arguments[index++].getDouble(); if (_lambda < 0) return Double.POSITIVE_INFINITY; _logLambda = Math.log(_lambda); } // Second argument of the factor: k final int k = arguments[index++].getInt(); final double negativeLogFactorialK = -org.apache.commons.math3.special.Gamma.logGamma(k + 1); if (_lambda > 0) return -(-_lambda + k * _logLambda + negativeLogFactorialK); else if (_lambda == 0 && k != 0) return Double.POSITIVE_INFINITY; else if (_lambda == 0 && k == 0) return 0; return Double.POSITIVE_INFINITY; } @Override public final boolean isDirected() { return true; } @Override public final int[] getDirectedToIndices(int numEdges) { return FactorFunctionUtilities.getListOfIndices(_firstDirectedToIndex, numEdges - 1); } /*----------------------------------- * IParametricFactorFunction methods */ @Override public int copyParametersInto(Map<String, Object> parameters) { if (_lambdaParameterConstant) { parameters.put("lambda", _lambda); return 1; } return 0; } @Override public @Nullable Object getParameter(String parameterName) { if (_lambdaParameterConstant) { switch (parameterName) { case "lambda": return _lambda; } } return null; } @Override public boolean hasConstantParameters() { return _lambdaParameterConstant; } /*------------------------- * Factor-specific methods */ public final boolean hasConstantLambdaParameter() { return _lambdaParameterConstant; } public final double getLambda() { return _lambda; } }