com.analog.lyric.dimple.factorfunctions.Multinomial.java Source code

Java tutorial

Introduction

Here is the source code for com.analog.lyric.dimple.factorfunctions.Multinomial.java

Source

/*******************************************************************************
*   Copyright 2013 Analog Devices, Inc.
*
*   Licensed under the Apache License, Version 2.0 (the "License");
*   you may not use this file except in compliance with the License.
*   You may obtain a copy of the License at
*
*       http://www.apache.org/licenses/LICENSE-2.0
*
*   Unless required by applicable law or agreed to in writing, software
*   distributed under the License is distributed on an "AS IS" BASIS,
*   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*   See the License for the specific language governing permissions and
*   limitations under the License.
********************************************************************************/

package com.analog.lyric.dimple.factorfunctions;

import com.analog.lyric.dimple.exceptions.DimpleException;
import com.analog.lyric.dimple.factorfunctions.core.FactorFunction;
import com.analog.lyric.dimple.factorfunctions.core.FactorFunctionUtilities;
import com.analog.lyric.dimple.model.values.Value;

/**
 * Parameterized multinomial distribution, which corresponds to p(x | N, alpha),
 * where x is a vector of discrete count variables, N is the total count across all categories, and
 * where alpha is a RealJoint variable vector of (not necessarily normalized) probabilities.
 * <p>
 * The domain of each x variable must be a zero-based integer with maximum value N (domain 0 through N).
 * If N is a variable rather than a constant, then the domain of each x must be range from 0 through
 * the maximum value in the domain of N.
 * <p>
 * Representing alpha as described, the conjugate prior for alpha is
 * a Dirichlet distribution.
 * Depending on the solver, it may or may not be necessary to use a
 * conjugate prior (for the Gibbs solver, for example, it is not).
 * <p>
 * The variables in the argument list are ordered as follows:
 * <ol>
 * <li> N: Parameter indicating the total count
 * <li> Alpha: RealJoint variable containing probabilities
 * <li> ... x: A number of discrete count variable, where the number of variables
 *    must equal the dimension of alpha
 * </ol>
 * N parameter may optionally be specified as a constant in the constructor.
 * In this case, N is not included in the list of arguments.
 * 
 * @since 0.06
 */
public class Multinomial extends FactorFunction {
    protected int _N;
    protected double _negativeLogFactorialN;
    protected boolean _NParameterConstant = false;
    private int _firstDirectedToIndex = 2;

    public Multinomial() {
        super();
    } // Variable N

    public Multinomial(int N) // Fixed N
    {
        this();
        _N = N;
        if (_N < 0)
            throw new DimpleException("N must be a non-negative value.");
        _negativeLogFactorialN = -org.apache.commons.math3.special.Gamma.logGamma(_N + 1);
        _NParameterConstant = true;
        _firstDirectedToIndex = 1;
    }

    @Override
    public final double evalEnergy(Value[] arguments) {
        int index = 0;
        if (!_NParameterConstant) {
            _N = arguments[index++].getInt(); // First argument is N parameter
            if (_N < 0)
                return Double.POSITIVE_INFINITY;
            _negativeLogFactorialN = -org.apache.commons.math3.special.Gamma.logGamma(_N + 1);
        }

        final double[] alpha = arguments[index++].getDoubleArray(); // Next argument is the probability parameter vector
        final int dimension = alpha.length;

        if (arguments.length - index != dimension)
            throw new DimpleException(
                    "Number of count variables must equal the dimension of the parameter vector.");

        int countSum = 0;
        double parameterSum = 0;
        double sum = _negativeLogFactorialN;
        for (int i = 0; i < dimension; i++) {
            final double alphai = alpha[i];
            if (alphai < 0)
                return Double.POSITIVE_INFINITY;
            parameterSum += alphai;

            final int x = arguments[index++].getInt(); // Remaining arguments are discrete count variables
            if (x < 0)
                return Double.POSITIVE_INFINITY;
            countSum += x;

            double negativeXLogAlphai;
            if (alphai == 0 && x == 0)
                negativeXLogAlphai = 0;
            else
                negativeXLogAlphai = -x * Math.log(alphai);
            sum += negativeXLogAlphai + org.apache.commons.math3.special.Gamma.logGamma(x + 1);
        }
        if (countSum != _N)
            return Double.POSITIVE_INFINITY;

        final double energy = sum + _N * Math.log(parameterSum);
        if (energy != energy) // Faster isNaN
            return Double.POSITIVE_INFINITY;

        return energy;
    }

    @Override
    public final boolean isDirected() {
        return true;
    }

    @Override
    public final int[] getDirectedToIndices(int numEdges) {
        // All edges except the parameter edges (if present) are directed-to edges
        return FactorFunctionUtilities.getListOfIndices(_firstDirectedToIndex, numEdges - 1);
    }

    // Factor-specific methods
    public final boolean hasConstantNParameter() {
        return _NParameterConstant;
    }

    public final int getN() {
        return _N;
    }
}