Java tutorial
/******************************************************************************* * Copyright 2012 Analog Devices, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ********************************************************************************/ package com.analog.lyric.dimple.factorfunctions; import java.util.Map; import org.eclipse.jdt.annotation.Nullable; import com.analog.lyric.dimple.exceptions.DimpleException; import com.analog.lyric.dimple.factorfunctions.core.FactorFunctionUtilities; import com.analog.lyric.dimple.factorfunctions.core.IParametricFactorFunction; import com.analog.lyric.dimple.factorfunctions.core.UnaryFactorFunction; import com.analog.lyric.dimple.model.values.Value; /** * Inverse Gamma distribution. The variables in the argument list are ordered as follows: * <p> * <ol> * <li>Alpha: Alpha parameter of the Inverse Gamma distribution (non-negative) * <li>Beta: Beta parameter of the Inverse Gamma distribution (non-negative) * <li>... an arbitrary number of real variables * </ol> * Alpha and Beta parameters may optionally be specified as constants in the constructor. * In this case, they are not included in the list of arguments. * */ public class InverseGamma extends UnaryFactorFunction implements IParametricFactorFunction { private static final long serialVersionUID = 1L; protected double _alpha; protected double _beta; protected double _alphaPlusOne; protected double _logGammaAlphaMinusAlphaLogBeta; protected boolean _parametersConstant = false; protected int _firstDirectedToIndex = 2; /*-------------- * Construction */ public InverseGamma() { super((String) null); } public InverseGamma(double alpha, double beta) { this(); _alpha = alpha; _beta = beta; _alphaPlusOne = _alpha + 1; _logGammaAlphaMinusAlphaLogBeta = org.apache.commons.math3.special.Gamma.logGamma(_alpha) - _alpha * Math.log(_beta); _parametersConstant = true; _firstDirectedToIndex = 0; if (_alpha <= 0) throw new DimpleException("Non-positive alpha parameter. This must be a positive value."); if (_beta <= 0) throw new DimpleException("Non-positive beta parameter. This must be a positive value."); } /** * Constructs inverse gamma distribution with fixed alpha and beta parameters. * @param parameters May specify either or both of the alpha and beta parameters using "alpha" and * "beta" keys respectively. Values will otherwise default to 1.0. * @since 0.07 */ public InverseGamma(Map<String, Object> parameters) { this((double) getOrDefault(parameters, "alpha", 1.0), (double) getOrDefault(parameters, "beta", 1.0)); } protected InverseGamma(InverseGamma other) { super(other); _alpha = other._alpha; _beta = other._beta; _alphaPlusOne = other._alphaPlusOne; _logGammaAlphaMinusAlphaLogBeta = other._logGammaAlphaMinusAlphaLogBeta; _parametersConstant = other._parametersConstant; _firstDirectedToIndex = other._firstDirectedToIndex; } @Override public InverseGamma clone() { return new InverseGamma(this); } /*---------------- * IDatum methods */ @Override public boolean objectEquals(@Nullable Object other) { if (this == other) { return true; } if (other instanceof InverseGamma) { InverseGamma that = (InverseGamma) other; return _parametersConstant == that._parametersConstant && _alpha == that._alpha && _beta == that._beta && _firstDirectedToIndex == that._firstDirectedToIndex; } return false; } /*------------------------ * FactorFunction methods */ @Override public final double evalEnergy(Value[] arguments) { int index = 0; if (!_parametersConstant) { _alpha = arguments[index++].getDouble(); // First input is alpha parameter (must be non-negative) if (_alpha <= 0) return Double.POSITIVE_INFINITY; _beta = arguments[index++].getDouble(); // Second input is beta parameter (must be non-negative) if (_beta <= 0) return Double.POSITIVE_INFINITY; _alphaPlusOne = _alpha + 1; _logGammaAlphaMinusAlphaLogBeta = org.apache.commons.math3.special.Gamma.logGamma(_alpha) - _alpha * Math.log(_beta); } final int length = arguments.length; final int N = length - index; // Number of non-parameter variables double sum = 0; for (; index < length; index++) { final double x = arguments[index].getDouble(); // Remaining inputs are Inverse Gamma variables if (x <= 0) return Double.POSITIVE_INFINITY; else sum += _beta / x + _alphaPlusOne * Math.log(x); } return sum + N * _logGammaAlphaMinusAlphaLogBeta; } @Override public final boolean isDirected() { return true; } @Override public final int[] getDirectedToIndices(int numEdges) { // All edges except the parameter edges (if present) are directed-to edges return FactorFunctionUtilities.getListOfIndices(_firstDirectedToIndex, numEdges - 1); } /*----------------------------------- * IParametricFactorFunction methods */ @Override public int copyParametersInto(Map<String, Object> parameters) { if (_parametersConstant) { parameters.put("alpha", _alpha); parameters.put("beta", _beta); return 2; } return 0; } @Override public @Nullable Object getParameter(String parameterName) { if (_parametersConstant) { switch (parameterName) { case "alpha": return _alpha; case "beta": return _beta; } } return null; } @Override public boolean hasConstantParameters() { return _parametersConstant; } }