Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package br.unicamp.ic.recod.gpsi.measures; import org.apache.commons.math3.linear.MatrixUtils; import org.apache.commons.math3.stat.descriptive.moment.Mean; import org.apache.commons.math3.stat.descriptive.moment.Variance; /** * * @author juan */ public class gpsiNormalBhattacharyyaDistanceScore implements gpsiSampleSeparationScore { @Override public double score(double[][][] input) { Mean mean = new Mean(); Variance var = new Variance(); double mu0, sigs0, mu1, sigs1; double dist[][] = new double[2][]; dist[0] = MatrixUtils.createRealMatrix(input[0]).getColumn(0); dist[1] = MatrixUtils.createRealMatrix(input[1]).getColumn(0); mu0 = mean.evaluate(dist[0]); sigs0 = var.evaluate(dist[0]) + Double.MIN_VALUE; mu1 = mean.evaluate(dist[1]); sigs1 = var.evaluate(dist[1]) + Double.MIN_VALUE; double distance = (Math.log((sigs0 / sigs1 + sigs1 / sigs0 + 2) / 4) + (Math.pow(mu1 - mu0, 2.0) / (sigs0 + sigs1))) / 4; return distance == Double.POSITIVE_INFINITY ? 0 : distance; } }