Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.predicate.bi.obj; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.BooleanConsumer; import at.gridtec.lambda4j.consumer.bi.obj.ObjBooleanConsumer; import at.gridtec.lambda4j.function.BooleanFunction; import at.gridtec.lambda4j.function.ByteFunction; import at.gridtec.lambda4j.function.CharFunction; import at.gridtec.lambda4j.function.FloatFunction; import at.gridtec.lambda4j.function.ShortFunction; import at.gridtec.lambda4j.function.bi.obj.ObjBooleanFunction; import at.gridtec.lambda4j.function.bi.obj.ObjBooleanToByteFunction; import at.gridtec.lambda4j.function.bi.obj.ObjBooleanToCharFunction; import at.gridtec.lambda4j.function.bi.obj.ObjBooleanToDoubleFunction; import at.gridtec.lambda4j.function.bi.obj.ObjBooleanToFloatFunction; import at.gridtec.lambda4j.function.bi.obj.ObjBooleanToIntFunction; import at.gridtec.lambda4j.function.bi.obj.ObjBooleanToLongFunction; import at.gridtec.lambda4j.function.bi.obj.ObjBooleanToShortFunction; import at.gridtec.lambda4j.function.conversion.BooleanToByteFunction; import at.gridtec.lambda4j.function.conversion.BooleanToCharFunction; import at.gridtec.lambda4j.function.conversion.BooleanToDoubleFunction; import at.gridtec.lambda4j.function.conversion.BooleanToFloatFunction; import at.gridtec.lambda4j.function.conversion.BooleanToIntFunction; import at.gridtec.lambda4j.function.conversion.BooleanToLongFunction; import at.gridtec.lambda4j.function.conversion.BooleanToShortFunction; import at.gridtec.lambda4j.operator.binary.BooleanBinaryOperator; import at.gridtec.lambda4j.operator.unary.BooleanUnaryOperator; import at.gridtec.lambda4j.predicate.BytePredicate; import at.gridtec.lambda4j.predicate.CharPredicate; import at.gridtec.lambda4j.predicate.FloatPredicate; import at.gridtec.lambda4j.predicate.Predicate2; import at.gridtec.lambda4j.predicate.ShortPredicate; import at.gridtec.lambda4j.predicate.bi.BiBytePredicate; import at.gridtec.lambda4j.predicate.bi.BiCharPredicate; import at.gridtec.lambda4j.predicate.bi.BiDoublePredicate; import at.gridtec.lambda4j.predicate.bi.BiFloatPredicate; import at.gridtec.lambda4j.predicate.bi.BiIntPredicate; import at.gridtec.lambda4j.predicate.bi.BiLongPredicate; import at.gridtec.lambda4j.predicate.bi.BiPredicate2; import at.gridtec.lambda4j.predicate.bi.BiShortPredicate; import org.apache.commons.lang3.tuple.Pair; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; import java.util.function.DoubleFunction; import java.util.function.DoublePredicate; import java.util.function.Function; import java.util.function.IntFunction; import java.util.function.IntPredicate; import java.util.function.LongFunction; import java.util.function.LongPredicate; import java.util.function.Predicate; /** * Represents an predicate (boolean-valued function) of one object-valued and one {@code boolean}-valued input argument. * This is a (reference, boolean) specialization of {@link BiPredicate2}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #test(Object, boolean)}. * * @param <T> The type of the first argument to the predicate * @see BiPredicate2 */ @SuppressWarnings("unused") @FunctionalInterface public interface ObjBooleanPredicate<T> extends Lambda { /** * Constructs a {@link ObjBooleanPredicate} based on a lambda expression or a method reference. Thereby the given * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired * type. With this method, it is possible to ensure that correct type is used from lambda expression or method * reference. * * @param <T> The type of the first argument to the predicate * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code ObjBooleanPredicate} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static <T> ObjBooleanPredicate<T> of(@Nullable final ObjBooleanPredicate<T> expression) { return expression; } /** * Calls the given {@link ObjBooleanPredicate} with the given arguments and returns its result. * * @param <T> The type of the first argument to the predicate * @param predicate The predicate to be called * @param t The first argument to the predicate * @param value The second argument to the predicate * @return The result from the given {@code ObjBooleanPredicate}. * @throws NullPointerException If given argument is {@code null} */ static <T> boolean call(@Nonnull final ObjBooleanPredicate<? super T> predicate, T t, boolean value) { Objects.requireNonNull(predicate); return predicate.test(t, value); } /** * Creates a {@link ObjBooleanPredicate} which uses the {@code first} parameter of this one as argument for the * given {@link Predicate}. * * @param <T> The type of the first argument to the predicate * @param predicate The predicate which accepts the {@code first} parameter of this one * @return Creates a {@code ObjBooleanPredicate} which uses the {@code first} parameter of this one as argument for * the given {@code Predicate}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T> ObjBooleanPredicate<T> onlyFirst(@Nonnull final Predicate<? super T> predicate) { Objects.requireNonNull(predicate); return (t, value) -> predicate.test(t); } /** * Creates a {@link ObjBooleanPredicate} which uses the {@code second} parameter of this one as argument for the * given {@link BooleanUnaryOperator}. * * @param <T> The type of the first argument to the predicate * @param operator The operator which accepts the {@code second} parameter of this one * @return Creates a {@code ObjBooleanPredicate} which uses the {@code second} parameter of this one as argument for * the given {@code BooleanUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T> ObjBooleanPredicate<T> onlySecond(@Nonnull final BooleanUnaryOperator operator) { Objects.requireNonNull(operator); return (t, value) -> operator.applyAsBoolean(value); } /** * Creates a {@link ObjBooleanPredicate} which always returns a given value. * * @param <T> The type of the first argument to the predicate * @param ret The return value for the constant * @return A {@code ObjBooleanPredicate} which always returns a given value. */ @Nonnull static <T> ObjBooleanPredicate<T> constant(boolean ret) { return (t, value) -> ret; } /** * Returns a {@link ObjBooleanPredicate} that always returns {@code true}. * * @param <T> The type of the first argument to the predicate * @return A {@link ObjBooleanPredicate} that always returns {@code true}. * @see #alwaysFalse() */ @Nonnull static <T> ObjBooleanPredicate<T> alwaysTrue() { return (t, value) -> true; } /** * Returns a {@link ObjBooleanPredicate} that always returns {@code false}. * * @param <T> The type of the first argument to the predicate * @return A {@link ObjBooleanPredicate} that always returns {@code false}. * @see #alwaysTrue() */ @Nonnull static <T> ObjBooleanPredicate<T> alwaysFalse() { return (t, value) -> false; } /** * Returns a {@link ObjBooleanPredicate} that tests if the given arguments are <b>equal</b> to the ones of this * predicate. * * @param <T> The type of the first argument to the predicate * @param target1 The first reference with which to compare for equality, which may be {@code null} * @param target2 The second reference with which to compare for equality, which may be {@code null} * @return A {@code ObjBooleanPredicate} that tests if the given arguments are <b>equal</b> to the ones of this * predicate. * @implNote This implementation checks equality according to {@link Objects#equals(Object)} operation for {@link * Object} references and {@code value == target} operation for primitive values. */ @Nonnull static <T> ObjBooleanPredicate<T> isEqual(@Nullable Object target1, boolean target2) { return (t, value) -> (t == null ? target1 == null : t.equals(target1)) && (value == target2); } /** * Applies this predicate to the given arguments. * * @param t The first argument to the predicate * @param value The second argument to the predicate * @return The return value from the predicate, which is its result. */ boolean test(T t, boolean value); /** * Applies this operator partially to some arguments of this one, producing a {@link BooleanUnaryOperator} as * result. * * @param t The first argument to this predicate used to partially apply this function * @return A {@code BooleanUnaryOperator} that represents this operator partially applied the some arguments. */ @Nonnull default BooleanUnaryOperator ptest(T t) { return (value) -> this.test(t, value); } /** * Applies this operator partially to some arguments of this one, producing a {@link Predicate2} as result. * * @param value The second argument to this predicate used to partially apply this function * @return A {@code Predicate2} that represents this operator partially applied the some arguments. */ @Nonnull default Predicate2<T> ptest(boolean value) { return (t) -> this.test(t, value); } /** * Returns the number of arguments for this predicate. * * @return The number of arguments for this predicate. * @implSpec The default implementation always returns {@code 2}. */ @Nonnegative default int arity() { return 2; } /** * Returns a composed {@link BiPredicate2} that first applies the {@code before} functions to its input, and * then applies this predicate to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed predicate * @param <B> The type of the argument to the second given predicate, and of composed predicate * @param before1 The first function to apply before this predicate is applied * @param before2 The second predicate to apply before this predicate is applied * @return A composed {@code BiPredicate2} that first applies the {@code before} functions to its input, and then * applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B> BiPredicate2<A, B> compose(@Nonnull final Function<? super A, ? extends T> before1, @Nonnull final Predicate<? super B> before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (a, b) -> test(before1.apply(a), before2.test(b)); } /** * Returns a composed {@link BooleanBinaryOperator} that first applies the {@code before} functions to its input, * and then applies this predicate to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second operator to apply before this predicate is applied * @return A composed {@code BooleanBinaryOperator} that first applies the {@code before} functions to its input, * and then applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default BooleanBinaryOperator composeFromBoolean(@Nonnull final BooleanFunction<? extends T> before1, @Nonnull final BooleanUnaryOperator before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.applyAsBoolean(value2)); } /** * Returns a composed {@link BiBytePredicate} that first applies the {@code before} functions to * its input, and then applies this predicate to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second predicate to apply before this predicate is applied * @return A composed {@code BiBytePredicate} that first applies the {@code before} functions to its input, and then * applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default BiBytePredicate composeFromByte(@Nonnull final ByteFunction<? extends T> before1, @Nonnull final BytePredicate before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.test(value2)); } /** * Returns a composed {@link BiCharPredicate} that first applies the {@code before} functions to * its input, and then applies this predicate to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second predicate to apply before this predicate is applied * @return A composed {@code BiCharPredicate} that first applies the {@code before} functions to its input, and then * applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default BiCharPredicate composeFromChar(@Nonnull final CharFunction<? extends T> before1, @Nonnull final CharPredicate before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.test(value2)); } /** * Returns a composed {@link BiDoublePredicate} that first applies the {@code before} functions to its input, and * then applies this predicate to the result. If evaluation of either operation throws an exception, it is relayed * to the caller of the composed operation. This method is just convenience, to provide the ability to execute an * operation which accepts {@code double} input, before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second predicate to apply before this predicate is applied * @return A composed {@code BiDoublePredicate} that first applies the {@code before} functions to its input, and * then applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default BiDoublePredicate composeFromDouble(@Nonnull final DoubleFunction<? extends T> before1, @Nonnull final DoublePredicate before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.test(value2)); } /** * Returns a composed {@link BiFloatPredicate} that first applies the {@code before} functions to its input, and * then applies this predicate to the result. If evaluation of either operation throws an exception, it is relayed * to the caller of the composed operation. This method is just convenience, to provide the ability to execute an * operation which accepts {@code float} input, before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second predicate to apply before this predicate is applied * @return A composed {@code BiFloatPredicate} that first applies the {@code before} functions to its input, and * then applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default BiFloatPredicate composeFromFloat(@Nonnull final FloatFunction<? extends T> before1, @Nonnull final FloatPredicate before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.test(value2)); } /** * Returns a composed {@link BiIntPredicate} that first applies the {@code before} functions to * its input, and then applies this predicate to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second predicate to apply before this predicate is applied * @return A composed {@code BiIntPredicate} that first applies the {@code before} functions to its input, and then * applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default BiIntPredicate composeFromInt(@Nonnull final IntFunction<? extends T> before1, @Nonnull final IntPredicate before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.test(value2)); } /** * Returns a composed {@link BiLongPredicate} that first applies the {@code before} functions to * its input, and then applies this predicate to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second predicate to apply before this predicate is applied * @return A composed {@code BiLongPredicate} that first applies the {@code before} functions to its input, and then * applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default BiLongPredicate composeFromLong(@Nonnull final LongFunction<? extends T> before1, @Nonnull final LongPredicate before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.test(value2)); } /** * Returns a composed {@link BiShortPredicate} that first applies the {@code before} functions to its input, and * then applies this predicate to the result. If evaluation of either operation throws an exception, it is relayed * to the caller of the composed operation. This method is just convenience, to provide the ability to execute an * operation which accepts {@code short} input, before this primitive predicate is executed. * * @param before1 The first function to apply before this predicate is applied * @param before2 The second predicate to apply before this predicate is applied * @return A composed {@code BiShortPredicate} that first applies the {@code before} functions to its input, and * then applies this predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default BiShortPredicate composeFromShort(@Nonnull final ShortFunction<? extends T> before1, @Nonnull final ShortPredicate before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> test(before1.apply(value1), before2.test(value2)); } /** * Returns a composed {@link ObjBooleanFunction} that first applies this predicate to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this predicate is applied * @return A composed {@code ObjBooleanFunction} that first applies this predicate to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> ObjBooleanFunction<T, S> andThen(@Nonnull final BooleanFunction<? extends S> after) { Objects.requireNonNull(after); return (t, value) -> after.apply(test(t, value)); } /** * Returns a composed {@link ObjBooleanPredicate} that first applies this predicate to its input, and then applies * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive predicate to an operation returning {@code boolean}. * * @param after The operator to apply after this predicate is applied * @return A composed {@code ObjBooleanPredicate} that first applies this predicate to its input, and then applies * the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default ObjBooleanPredicate<T> andThenToBoolean(@Nonnull final BooleanUnaryOperator after) { Objects.requireNonNull(after); return (t, value) -> after.applyAsBoolean(test(t, value)); } /** * Returns a composed {@link ObjBooleanToByteFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive predicate to an operation returning {@code byte}. * * @param after The function to apply after this predicate is applied * @return A composed {@code ObjBooleanToByteFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default ObjBooleanToByteFunction<T> andThenToByte(@Nonnull final BooleanToByteFunction after) { Objects.requireNonNull(after); return (t, value) -> after.applyAsByte(test(t, value)); } /** * Returns a composed {@link ObjBooleanToCharFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive predicate to an operation returning {@code char}. * * @param after The function to apply after this predicate is applied * @return A composed {@code ObjBooleanToCharFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default ObjBooleanToCharFunction<T> andThenToChar(@Nonnull final BooleanToCharFunction after) { Objects.requireNonNull(after); return (t, value) -> after.applyAsChar(test(t, value)); } /** * Returns a composed {@link ObjBooleanToDoubleFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive predicate to an operation returning {@code double}. * * @param after The function to apply after this predicate is applied * @return A composed {@code ObjBooleanToDoubleFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default ObjBooleanToDoubleFunction<T> andThenToDouble(@Nonnull final BooleanToDoubleFunction after) { Objects.requireNonNull(after); return (t, value) -> after.applyAsDouble(test(t, value)); } /** * Returns a composed {@link ObjBooleanToFloatFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive predicate to an operation returning {@code float}. * * @param after The function to apply after this predicate is applied * @return A composed {@code ObjBooleanToFloatFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default ObjBooleanToFloatFunction<T> andThenToFloat(@Nonnull final BooleanToFloatFunction after) { Objects.requireNonNull(after); return (t, value) -> after.applyAsFloat(test(t, value)); } /** * Returns a composed {@link ObjBooleanToIntFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive predicate to an operation returning {@code int}. * * @param after The function to apply after this predicate is applied * @return A composed {@code ObjBooleanToIntFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default ObjBooleanToIntFunction<T> andThenToInt(@Nonnull final BooleanToIntFunction after) { Objects.requireNonNull(after); return (t, value) -> after.applyAsInt(test(t, value)); } /** * Returns a composed {@link ObjBooleanToLongFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive predicate to an operation returning {@code long}. * * @param after The function to apply after this predicate is applied * @return A composed {@code ObjBooleanToLongFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default ObjBooleanToLongFunction<T> andThenToLong(@Nonnull final BooleanToLongFunction after) { Objects.requireNonNull(after); return (t, value) -> after.applyAsLong(test(t, value)); } /** * Returns a composed {@link ObjBooleanToShortFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive predicate to an operation returning {@code short}. * * @param after The function to apply after this predicate is applied * @return A composed {@code ObjBooleanToShortFunction} that first applies this predicate to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default ObjBooleanToShortFunction<T> andThenToShort(@Nonnull final BooleanToShortFunction after) { Objects.requireNonNull(after); return (t, value) -> after.applyAsShort(test(t, value)); } /** * Returns a composed {@link ObjBooleanConsumer} that fist applies this predicate to its input, and then consumes * the result using the given {@link BooleanConsumer}. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code ObjBooleanConsumer} that first applies this predicate to its input, and then consumes * the result using the given {@code BooleanConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default ObjBooleanConsumer<T> consume(@Nonnull final BooleanConsumer consumer) { Objects.requireNonNull(consumer); return (t, value) -> consumer.accept(test(t, value)); } /** * Returns a {@link ObjBooleanPredicate} that represents the logical negation of this one. * * @return A {@code ObjBooleanPredicate} that represents the logical negation of this one. */ @Nonnull default ObjBooleanPredicate<T> negate() { return (t, value) -> !test(t, value); } /** * Returns a composed {@link ObjBooleanPredicate} that represents a short-circuiting logical AND of this predicate * and another. When evaluating the composed predicate, if this predicate is {@code false}, then the {@code other} * predicate is not evaluated. * <p> * Any exceptions thrown during evaluation of either predicate is relayed to the caller; if evaluation of this * {@code ObjBooleanPredicate} throws an exception, the {@code other} predicate will not be evaluated. * * @param other A {@code ObjBooleanPredicate} that will be logically-ANDed with this one * @return A composed {@code ObjBooleanPredicate} that represents the short-circuiting logical AND of this predicate * and the {@code other} predicate. * @throws NullPointerException If given argument is {@code null} * @see #or(ObjBooleanPredicate) * @see #xor(ObjBooleanPredicate) */ @Nonnull default ObjBooleanPredicate<T> and(@Nonnull final ObjBooleanPredicate<? super T> other) { Objects.requireNonNull(other); return (t, value) -> test(t, value) && other.test(t, value); } /** * Returns a composed {@link ObjBooleanPredicate} that represents a short-circuiting logical OR of this predicate * and another. When evaluating the composed predicate, if this predicate is {@code true}, then the {@code other} * predicate is not evaluated. * <p> * Any exceptions thrown during evaluation of either predicate is relayed to the caller; if evaluation of this * {@code ObjBooleanPredicate} throws an exception, the {@code other} predicate will not be evaluated. * * @param other A {@code ObjBooleanPredicate} that will be logically-ORed with this one * @return A composed {@code ObjBooleanPredicate} that represents the short-circuiting logical OR of this predicate * and the {@code other} predicate. * @throws NullPointerException If given argument is {@code null} * @see #and(ObjBooleanPredicate) * @see #xor(ObjBooleanPredicate) */ @Nonnull default ObjBooleanPredicate<T> or(@Nonnull final ObjBooleanPredicate<? super T> other) { Objects.requireNonNull(other); return (t, value) -> test(t, value) || other.test(t, value); } /** * Returns a composed {@link ObjBooleanPredicate} that represents a short-circuiting logical XOR of this predicate * and another. Any exceptions thrown during evaluation of either predicate is relayed to the caller; if evaluation * of this {@code ObjBooleanPredicate} throws an exception, the {@code other} predicate will not be evaluated. * * @param other A {@code ObjBooleanPredicate} that will be logically-XORed with this one * @return A composed {@code ObjBooleanPredicate} that represents the short-circuiting logical XOR of this predicate * and the {@code other} predicate. * @throws NullPointerException If given argument is {@code null} * @see #and(ObjBooleanPredicate) * @see #or(ObjBooleanPredicate) */ @Nonnull default ObjBooleanPredicate<T> xor(@Nonnull final ObjBooleanPredicate<? super T> other) { Objects.requireNonNull(other); return (t, value) -> test(t, value) ^ other.test(t, value); } /** * Returns a memoized (caching) version of this {@link ObjBooleanPredicate}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the predicate and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code ObjBooleanPredicate}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized predicate, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized predicate can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default ObjBooleanPredicate<T> memoized() { if (isMemoized()) { return this; } else { final Map<Pair<T, Boolean>, Boolean> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (ObjBooleanPredicate<T> & Memoized) (t, value) -> { final boolean returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Pair.of(t, value), key -> test(key.getLeft(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link BiPredicate2} which represents this {@link ObjBooleanPredicate}. Thereby the primitive * input argument for this predicate is autoboxed. This method provides the possibility to use this * {@code ObjBooleanPredicate} with methods provided by the {@code JDK}. * * @return A composed {@code BiPredicate2} which represents this {@code ObjBooleanPredicate}. */ @Nonnull default BiPredicate2<T, Boolean> boxed() { return this::test; } }