Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.operator.ternary; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.FloatConsumer; import at.gridtec.lambda4j.consumer.tri.TriFloatConsumer; import at.gridtec.lambda4j.function.FloatFunction; import at.gridtec.lambda4j.function.conversion.BooleanToFloatFunction; import at.gridtec.lambda4j.function.conversion.ByteToFloatFunction; import at.gridtec.lambda4j.function.conversion.CharToFloatFunction; import at.gridtec.lambda4j.function.conversion.DoubleToFloatFunction; import at.gridtec.lambda4j.function.conversion.FloatToByteFunction; import at.gridtec.lambda4j.function.conversion.FloatToCharFunction; import at.gridtec.lambda4j.function.conversion.FloatToDoubleFunction; import at.gridtec.lambda4j.function.conversion.FloatToIntFunction; import at.gridtec.lambda4j.function.conversion.FloatToLongFunction; import at.gridtec.lambda4j.function.conversion.FloatToShortFunction; import at.gridtec.lambda4j.function.conversion.IntToFloatFunction; import at.gridtec.lambda4j.function.conversion.LongToFloatFunction; import at.gridtec.lambda4j.function.conversion.ShortToFloatFunction; import at.gridtec.lambda4j.function.to.ToFloatFunction; import at.gridtec.lambda4j.function.tri.TriFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriBooleanToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToLongFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriIntToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriLongToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriShortToFloatFunction; import at.gridtec.lambda4j.function.tri.to.ToFloatTriFunction; import at.gridtec.lambda4j.operator.binary.FloatBinaryOperator; import at.gridtec.lambda4j.operator.unary.FloatUnaryOperator; import at.gridtec.lambda4j.predicate.FloatPredicate; import at.gridtec.lambda4j.predicate.tri.TriFloatPredicate; import org.apache.commons.lang3.tuple.Triple; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; /** * Represents an operation that accepts three {@code float}-valued input arguments and produces a * {@code float}-valued result. * This is a primitive specialization of {@link TernaryOperator}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsFloat(float, float, float)}. * * @see TernaryOperator */ @SuppressWarnings("unused") @FunctionalInterface public interface FloatTernaryOperator extends Lambda { /** * Constructs a {@link FloatTernaryOperator} based on a lambda expression or a method reference. Thereby the given * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired * type. With this method, it is possible to ensure that correct type is used from lambda expression or method * reference. * * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code FloatTernaryOperator} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static FloatTernaryOperator of(@Nullable final FloatTernaryOperator expression) { return expression; } /** * Calls the given {@link FloatTernaryOperator} with the given arguments and returns its result. * * @param operator The operator to be called * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @param value3 The third argument to the operator * @return The result from the given {@code FloatTernaryOperator}. * @throws NullPointerException If given argument is {@code null} */ static float call(@Nonnull final FloatTernaryOperator operator, float value1, float value2, float value3) { Objects.requireNonNull(operator); return operator.applyAsFloat(value1, value2, value3); } /** * Creates a {@link FloatTernaryOperator} which uses the {@code first} parameter of this one as argument for the * given {@link FloatUnaryOperator}. * * @param operator The operator which accepts the {@code first} parameter of this one * @return Creates a {@code FloatTernaryOperator} which uses the {@code first} parameter of this one as argument for * the given {@code FloatUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static FloatTernaryOperator onlyFirst(@Nonnull final FloatUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsFloat(value1); } /** * Creates a {@link FloatTernaryOperator} which uses the {@code second} parameter of this one as argument for the * given {@link FloatUnaryOperator}. * * @param operator The operator which accepts the {@code second} parameter of this one * @return Creates a {@code FloatTernaryOperator} which uses the {@code second} parameter of this one as argument * for the given {@code FloatUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static FloatTernaryOperator onlySecond(@Nonnull final FloatUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsFloat(value2); } /** * Creates a {@link FloatTernaryOperator} which uses the {@code third} parameter of this one as argument for the * given {@link FloatUnaryOperator}. * * @param operator The operator which accepts the {@code third} parameter of this one * @return Creates a {@code FloatTernaryOperator} which uses the {@code third} parameter of this one as argument for * the given {@code FloatUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static FloatTernaryOperator onlyThird(@Nonnull final FloatUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsFloat(value3); } /** * Creates a {@link FloatTernaryOperator} which always returns a given value. * * @param ret The return value for the constant * @return A {@code FloatTernaryOperator} which always returns a given value. */ @Nonnull static FloatTernaryOperator constant(float ret) { return (value1, value2, value3) -> ret; } /** * Applies this operator to the given arguments. * * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @param value3 The third argument to the operator * @return The return value from the operator, which is its result. */ float applyAsFloat(float value1, float value2, float value3); /** * Applies this operator partially to some arguments of this one, producing a {@link FloatBinaryOperator} as result. * * @param value1 The first argument to this operator used to partially apply this function * @return A {@code FloatBinaryOperator} that represents this operator partially applied the some arguments. */ @Nonnull default FloatBinaryOperator papplyAsFloat(float value1) { return (value2, value3) -> this.applyAsFloat(value1, value2, value3); } /** * Applies this operator partially to some arguments of this one, producing a {@link FloatUnaryOperator} as result. * * @param value1 The first argument to this operator used to partially apply this function * @param value2 The second argument to this operator used to partially apply this function * @return A {@code FloatUnaryOperator} that represents this operator partially applied the some arguments. */ @Nonnull default FloatUnaryOperator papplyAsFloat(float value1, float value2) { return (value3) -> this.applyAsFloat(value1, value2, value3); } /** * Returns the number of arguments for this operator. * * @return The number of arguments for this operator. * @implSpec The default implementation always returns {@code 3}. */ @Nonnegative default int arity() { return 3; } /** * Returns a composed {@link ToFloatTriFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param <C> The type of the argument to the third given function, and of composed function * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code ToFloatTriFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B, C> ToFloatTriFunction<A, B, C> compose(@Nonnull final ToFloatFunction<? super A> before1, @Nonnull final ToFloatFunction<? super B> before2, @Nonnull final ToFloatFunction<? super C> before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (a, b, c) -> applyAsFloat(before1.applyAsFloat(a), before2.applyAsFloat(b), before3.applyAsFloat(c)); } /** * Returns a composed {@link TriBooleanToFloatFunction} that first applies the {@code before} functions to its * input, and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriBooleanToFloatFunction} that first applies the {@code before} functions to its * input, and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriBooleanToFloatFunction composeFromBoolean(@Nonnull final BooleanToFloatFunction before1, @Nonnull final BooleanToFloatFunction before2, @Nonnull final BooleanToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriByteToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriByteToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default TriByteToFloatFunction composeFromByte(@Nonnull final ByteToFloatFunction before1, @Nonnull final ByteToFloatFunction before2, @Nonnull final ByteToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriCharToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriCharToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default TriCharToFloatFunction composeFromChar(@Nonnull final CharToFloatFunction before1, @Nonnull final CharToFloatFunction before2, @Nonnull final CharToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriDoubleToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriDoubleToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default TriDoubleToFloatFunction composeFromDouble(@Nonnull final DoubleToFloatFunction before1, @Nonnull final DoubleToFloatFunction before2, @Nonnull final DoubleToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link FloatTernaryOperator} that first applies the {@code before} operators to its input, and * then applies this operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to execute an * operation which accepts {@code float} input, before this primitive operator is executed. * * @param before1 The first operator to apply before this operator is applied * @param before2 The second operator to apply before this operator is applied * @param before3 The third operator to apply before this operator is applied * @return A composed {@code FloatTernaryOperator} that first applies the {@code before} operators to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default FloatTernaryOperator composeFromFloat(@Nonnull final FloatUnaryOperator before1, @Nonnull final FloatUnaryOperator before2, @Nonnull final FloatUnaryOperator before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriIntToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriIntToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default TriIntToFloatFunction composeFromInt(@Nonnull final IntToFloatFunction before1, @Nonnull final IntToFloatFunction before2, @Nonnull final IntToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriLongToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriLongToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default TriLongToFloatFunction composeFromLong(@Nonnull final LongToFloatFunction before1, @Nonnull final LongToFloatFunction before2, @Nonnull final LongToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriShortToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code short} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriShortToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default TriShortToFloatFunction composeFromShort(@Nonnull final ShortToFloatFunction before1, @Nonnull final ShortToFloatFunction before2, @Nonnull final ShortToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriFloatFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this operator is applied * @return A composed {@code TriFloatFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> TriFloatFunction<S> andThen(@Nonnull final FloatFunction<? extends S> after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.apply(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link TriFloatPredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code boolean}. * * @param after The predicate to apply after this operator is applied * @return A composed {@code TriFloatPredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriFloatPredicate andThenToBoolean(@Nonnull final FloatPredicate after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.test(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link TriFloatToByteFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code byte}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriFloatToByteFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default TriFloatToByteFunction andThenToByte(@Nonnull final FloatToByteFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsByte(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link TriFloatToCharFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code char}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriFloatToCharFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default TriFloatToCharFunction andThenToChar(@Nonnull final FloatToCharFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsChar(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link TriFloatToDoubleFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code double}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriFloatToDoubleFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default TriFloatToDoubleFunction andThenToDouble(@Nonnull final FloatToDoubleFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsDouble(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link FloatTernaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code float}. * * @param after The operator to apply after this operator is applied * @return A composed {@code FloatTernaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default FloatTernaryOperator andThenToFloat(@Nonnull final FloatUnaryOperator after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsFloat(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link TriFloatToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code int}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriFloatToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default TriFloatToIntFunction andThenToInt(@Nonnull final FloatToIntFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsInt(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link TriFloatToLongFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code long}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriFloatToLongFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default TriFloatToLongFunction andThenToLong(@Nonnull final FloatToLongFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsLong(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link TriFloatToShortFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code short}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriFloatToShortFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default TriFloatToShortFunction andThenToShort(@Nonnull final FloatToShortFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsShort(applyAsFloat(value1, value2, value3)); } /** * Returns a composed {@link TriFloatConsumer} that fist applies this operator to its input, and then consumes the * result using the given {@link FloatConsumer}. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code TriFloatConsumer} that first applies this operator to its input, and then consumes the * result using the given {@code FloatConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default TriFloatConsumer consume(@Nonnull final FloatConsumer consumer) { Objects.requireNonNull(consumer); return (value1, value2, value3) -> consumer.accept(applyAsFloat(value1, value2, value3)); } /** * Returns a memoized (caching) version of this {@link FloatTernaryOperator}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the operator and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code FloatTernaryOperator}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized operator, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized operator can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default FloatTernaryOperator memoized() { if (isMemoized()) { return this; } else { final Map<Triple<Float, Float, Float>, Float> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (FloatTernaryOperator & Memoized) (value1, value2, value3) -> { final float returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Triple.of(value1, value2, value3), key -> applyAsFloat(key.getLeft(), key.getMiddle(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link TernaryOperator} which represents this {@link FloatTernaryOperator}. Thereby the * primitive input argument for this operator is autoboxed. This method provides the possibility to use this {@code * FloatTernaryOperator} with methods provided by the {@code JDK}. * * @return A composed {@code TernaryOperator} which represents this {@code FloatTernaryOperator}. */ @Nonnull default TernaryOperator<Float> boxed() { return this::applyAsFloat; } }