Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.operator.ternary; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.tri.TriDoubleConsumer; import at.gridtec.lambda4j.function.conversion.BooleanToDoubleFunction; import at.gridtec.lambda4j.function.conversion.ByteToDoubleFunction; import at.gridtec.lambda4j.function.conversion.CharToDoubleFunction; import at.gridtec.lambda4j.function.conversion.DoubleToByteFunction; import at.gridtec.lambda4j.function.conversion.DoubleToCharFunction; import at.gridtec.lambda4j.function.conversion.DoubleToFloatFunction; import at.gridtec.lambda4j.function.conversion.DoubleToShortFunction; import at.gridtec.lambda4j.function.conversion.FloatToDoubleFunction; import at.gridtec.lambda4j.function.conversion.ShortToDoubleFunction; import at.gridtec.lambda4j.function.tri.TriDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriBooleanToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToLongFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriIntToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriLongToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriShortToDoubleFunction; import at.gridtec.lambda4j.function.tri.to.ToDoubleTriFunction; import at.gridtec.lambda4j.operator.binary.DoubleBinaryOperator2; import at.gridtec.lambda4j.operator.unary.DoubleUnaryOperator2; import at.gridtec.lambda4j.predicate.tri.TriDoublePredicate; import org.apache.commons.lang3.tuple.Triple; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; import java.util.function.DoubleConsumer; import java.util.function.DoubleFunction; import java.util.function.DoublePredicate; import java.util.function.DoubleToIntFunction; import java.util.function.DoubleToLongFunction; import java.util.function.DoubleUnaryOperator; import java.util.function.IntToDoubleFunction; import java.util.function.LongToDoubleFunction; import java.util.function.ToDoubleFunction; /** * Represents an operation that accepts three {@code double}-valued input arguments and produces a * {@code double}-valued result. * This is a primitive specialization of {@link TernaryOperator}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsDouble(double, double, double)}. * * @see TernaryOperator */ @SuppressWarnings("unused") @FunctionalInterface public interface DoubleTernaryOperator extends Lambda { /** * Constructs a {@link DoubleTernaryOperator} based on a lambda expression or a method reference. Thereby the given * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired * type. With this method, it is possible to ensure that correct type is used from lambda expression or method * reference. * * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code DoubleTernaryOperator} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static DoubleTernaryOperator of(@Nullable final DoubleTernaryOperator expression) { return expression; } /** * Calls the given {@link DoubleTernaryOperator} with the given arguments and returns its result. * * @param operator The operator to be called * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @param value3 The third argument to the operator * @return The result from the given {@code DoubleTernaryOperator}. * @throws NullPointerException If given argument is {@code null} */ static double call(@Nonnull final DoubleTernaryOperator operator, double value1, double value2, double value3) { Objects.requireNonNull(operator); return operator.applyAsDouble(value1, value2, value3); } /** * Creates a {@link DoubleTernaryOperator} which uses the {@code first} parameter of this one as argument for the * given {@link DoubleUnaryOperator}. * * @param operator The operator which accepts the {@code first} parameter of this one * @return Creates a {@code DoubleTernaryOperator} which uses the {@code first} parameter of this one as argument * for the given {@code DoubleUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static DoubleTernaryOperator onlyFirst(@Nonnull final DoubleUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsDouble(value1); } /** * Creates a {@link DoubleTernaryOperator} which uses the {@code second} parameter of this one as argument for the * given {@link DoubleUnaryOperator}. * * @param operator The operator which accepts the {@code second} parameter of this one * @return Creates a {@code DoubleTernaryOperator} which uses the {@code second} parameter of this one as argument * for the given {@code DoubleUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static DoubleTernaryOperator onlySecond(@Nonnull final DoubleUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsDouble(value2); } /** * Creates a {@link DoubleTernaryOperator} which uses the {@code third} parameter of this one as argument for the * given {@link DoubleUnaryOperator}. * * @param operator The operator which accepts the {@code third} parameter of this one * @return Creates a {@code DoubleTernaryOperator} which uses the {@code third} parameter of this one as argument * for the given {@code DoubleUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static DoubleTernaryOperator onlyThird(@Nonnull final DoubleUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsDouble(value3); } /** * Creates a {@link DoubleTernaryOperator} which always returns a given value. * * @param ret The return value for the constant * @return A {@code DoubleTernaryOperator} which always returns a given value. */ @Nonnull static DoubleTernaryOperator constant(double ret) { return (value1, value2, value3) -> ret; } /** * Applies this operator to the given arguments. * * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @param value3 The third argument to the operator * @return The return value from the operator, which is its result. */ double applyAsDouble(double value1, double value2, double value3); /** * Applies this operator partially to some arguments of this one, producing a {@link DoubleBinaryOperator2} as * result. * * @param value1 The first argument to this operator used to partially apply this function * @return A {@code DoubleBinaryOperator2} that represents this operator partially applied the some arguments. */ @Nonnull default DoubleBinaryOperator2 papplyAsDouble(double value1) { return (value2, value3) -> this.applyAsDouble(value1, value2, value3); } /** * Applies this operator partially to some arguments of this one, producing a {@link DoubleUnaryOperator2} as * result. * * @param value1 The first argument to this operator used to partially apply this function * @param value2 The second argument to this operator used to partially apply this function * @return A {@code DoubleUnaryOperator2} that represents this operator partially applied the some arguments. */ @Nonnull default DoubleUnaryOperator2 papplyAsDouble(double value1, double value2) { return (value3) -> this.applyAsDouble(value1, value2, value3); } /** * Returns the number of arguments for this operator. * * @return The number of arguments for this operator. * @implSpec The default implementation always returns {@code 3}. */ @Nonnegative default int arity() { return 3; } /** * Returns a composed {@link ToDoubleTriFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param <C> The type of the argument to the third given function, and of composed function * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code ToDoubleTriFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B, C> ToDoubleTriFunction<A, B, C> compose(@Nonnull final ToDoubleFunction<? super A> before1, @Nonnull final ToDoubleFunction<? super B> before2, @Nonnull final ToDoubleFunction<? super C> before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (a, b, c) -> applyAsDouble(before1.applyAsDouble(a), before2.applyAsDouble(b), before3.applyAsDouble(c)); } /** * Returns a composed {@link TriBooleanToDoubleFunction} that first applies the {@code before} functions to its * input, and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriBooleanToDoubleFunction} that first applies the {@code before} functions to its * input, and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriBooleanToDoubleFunction composeFromBoolean(@Nonnull final BooleanToDoubleFunction before1, @Nonnull final BooleanToDoubleFunction before2, @Nonnull final BooleanToDoubleFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsDouble(before1.applyAsDouble(value1), before2.applyAsDouble(value2), before3.applyAsDouble(value3)); } /** * Returns a composed {@link TriByteToDoubleFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriByteToDoubleFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default TriByteToDoubleFunction composeFromByte(@Nonnull final ByteToDoubleFunction before1, @Nonnull final ByteToDoubleFunction before2, @Nonnull final ByteToDoubleFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsDouble(before1.applyAsDouble(value1), before2.applyAsDouble(value2), before3.applyAsDouble(value3)); } /** * Returns a composed {@link TriCharToDoubleFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriCharToDoubleFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default TriCharToDoubleFunction composeFromChar(@Nonnull final CharToDoubleFunction before1, @Nonnull final CharToDoubleFunction before2, @Nonnull final CharToDoubleFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsDouble(before1.applyAsDouble(value1), before2.applyAsDouble(value2), before3.applyAsDouble(value3)); } /** * Returns a composed {@link DoubleTernaryOperator} that first applies the {@code before} operators to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive operator is executed. * * @param before1 The first operator to apply before this operator is applied * @param before2 The second operator to apply before this operator is applied * @param before3 The third operator to apply before this operator is applied * @return A composed {@code DoubleTernaryOperator} that first applies the {@code before} operators to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default DoubleTernaryOperator composeFromDouble(@Nonnull final DoubleUnaryOperator before1, @Nonnull final DoubleUnaryOperator before2, @Nonnull final DoubleUnaryOperator before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsDouble(before1.applyAsDouble(value1), before2.applyAsDouble(value2), before3.applyAsDouble(value3)); } /** * Returns a composed {@link TriFloatToDoubleFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code float} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriFloatToDoubleFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default TriFloatToDoubleFunction composeFromFloat(@Nonnull final FloatToDoubleFunction before1, @Nonnull final FloatToDoubleFunction before2, @Nonnull final FloatToDoubleFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsDouble(before1.applyAsDouble(value1), before2.applyAsDouble(value2), before3.applyAsDouble(value3)); } /** * Returns a composed {@link TriIntToDoubleFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriIntToDoubleFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default TriIntToDoubleFunction composeFromInt(@Nonnull final IntToDoubleFunction before1, @Nonnull final IntToDoubleFunction before2, @Nonnull final IntToDoubleFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsDouble(before1.applyAsDouble(value1), before2.applyAsDouble(value2), before3.applyAsDouble(value3)); } /** * Returns a composed {@link TriLongToDoubleFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriLongToDoubleFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default TriLongToDoubleFunction composeFromLong(@Nonnull final LongToDoubleFunction before1, @Nonnull final LongToDoubleFunction before2, @Nonnull final LongToDoubleFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsDouble(before1.applyAsDouble(value1), before2.applyAsDouble(value2), before3.applyAsDouble(value3)); } /** * Returns a composed {@link TriShortToDoubleFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code short} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriShortToDoubleFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default TriShortToDoubleFunction composeFromShort(@Nonnull final ShortToDoubleFunction before1, @Nonnull final ShortToDoubleFunction before2, @Nonnull final ShortToDoubleFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsDouble(before1.applyAsDouble(value1), before2.applyAsDouble(value2), before3.applyAsDouble(value3)); } /** * Returns a composed {@link TriDoubleFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this operator is applied * @return A composed {@code TriDoubleFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> TriDoubleFunction<S> andThen(@Nonnull final DoubleFunction<? extends S> after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.apply(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link TriDoublePredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code boolean}. * * @param after The predicate to apply after this operator is applied * @return A composed {@code TriDoublePredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriDoublePredicate andThenToBoolean(@Nonnull final DoublePredicate after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.test(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link TriDoubleToByteFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code byte}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriDoubleToByteFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default TriDoubleToByteFunction andThenToByte(@Nonnull final DoubleToByteFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsByte(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link TriDoubleToCharFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code char}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriDoubleToCharFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default TriDoubleToCharFunction andThenToChar(@Nonnull final DoubleToCharFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsChar(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link DoubleTernaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code double}. * * @param after The operator to apply after this operator is applied * @return A composed {@code DoubleTernaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default DoubleTernaryOperator andThenToDouble(@Nonnull final DoubleUnaryOperator after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsDouble(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link TriDoubleToFloatFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code float}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriDoubleToFloatFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default TriDoubleToFloatFunction andThenToFloat(@Nonnull final DoubleToFloatFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsFloat(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link TriDoubleToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code int}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriDoubleToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default TriDoubleToIntFunction andThenToInt(@Nonnull final DoubleToIntFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsInt(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link TriDoubleToLongFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code long}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriDoubleToLongFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default TriDoubleToLongFunction andThenToLong(@Nonnull final DoubleToLongFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsLong(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link TriDoubleToShortFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code short}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriDoubleToShortFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default TriDoubleToShortFunction andThenToShort(@Nonnull final DoubleToShortFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsShort(applyAsDouble(value1, value2, value3)); } /** * Returns a composed {@link TriDoubleConsumer} that fist applies this operator to its input, and then consumes the * result using the given {@link DoubleConsumer}. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code TriDoubleConsumer} that first applies this operator to its input, and then consumes the * result using the given {@code DoubleConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default TriDoubleConsumer consume(@Nonnull final DoubleConsumer consumer) { Objects.requireNonNull(consumer); return (value1, value2, value3) -> consumer.accept(applyAsDouble(value1, value2, value3)); } /** * Returns a memoized (caching) version of this {@link DoubleTernaryOperator}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the operator and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code DoubleTernaryOperator}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized operator, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized operator can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default DoubleTernaryOperator memoized() { if (isMemoized()) { return this; } else { final Map<Triple<Double, Double, Double>, Double> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (DoubleTernaryOperator & Memoized) (value1, value2, value3) -> { final double returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Triple.of(value1, value2, value3), key -> applyAsDouble(key.getLeft(), key.getMiddle(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link TernaryOperator} which represents this {@link DoubleTernaryOperator}. Thereby the * primitive input argument for this operator is autoboxed. This method provides the possibility to use this {@code * DoubleTernaryOperator} with methods provided by the {@code JDK}. * * @return A composed {@code TernaryOperator} which represents this {@code DoubleTernaryOperator}. */ @Nonnull default TernaryOperator<Double> boxed() { return this::applyAsDouble; } }