Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.operator.ternary; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.CharConsumer; import at.gridtec.lambda4j.consumer.tri.TriCharConsumer; import at.gridtec.lambda4j.function.CharFunction; import at.gridtec.lambda4j.function.conversion.BooleanToCharFunction; import at.gridtec.lambda4j.function.conversion.ByteToCharFunction; import at.gridtec.lambda4j.function.conversion.CharToByteFunction; import at.gridtec.lambda4j.function.conversion.CharToDoubleFunction; import at.gridtec.lambda4j.function.conversion.CharToFloatFunction; import at.gridtec.lambda4j.function.conversion.CharToIntFunction; import at.gridtec.lambda4j.function.conversion.CharToLongFunction; import at.gridtec.lambda4j.function.conversion.CharToShortFunction; import at.gridtec.lambda4j.function.conversion.DoubleToCharFunction; import at.gridtec.lambda4j.function.conversion.FloatToCharFunction; import at.gridtec.lambda4j.function.conversion.IntToCharFunction; import at.gridtec.lambda4j.function.conversion.LongToCharFunction; import at.gridtec.lambda4j.function.conversion.ShortToCharFunction; import at.gridtec.lambda4j.function.to.ToCharFunction; import at.gridtec.lambda4j.function.tri.TriCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriBooleanToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToLongFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriIntToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriLongToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriShortToCharFunction; import at.gridtec.lambda4j.function.tri.to.ToCharTriFunction; import at.gridtec.lambda4j.operator.binary.CharBinaryOperator; import at.gridtec.lambda4j.operator.unary.CharUnaryOperator; import at.gridtec.lambda4j.predicate.CharPredicate; import at.gridtec.lambda4j.predicate.tri.TriCharPredicate; import org.apache.commons.lang3.tuple.Triple; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; /** * Represents an operation that accepts three {@code char}-valued input arguments and produces a * {@code char}-valued result. * This is a primitive specialization of {@link TernaryOperator}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsChar(char, char, char)}. * * @see TernaryOperator */ @SuppressWarnings("unused") @FunctionalInterface public interface CharTernaryOperator extends Lambda { /** * Constructs a {@link CharTernaryOperator} based on a lambda expression or a method reference. Thereby the given * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired * type. With this method, it is possible to ensure that correct type is used from lambda expression or method * reference. * * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code CharTernaryOperator} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static CharTernaryOperator of(@Nullable final CharTernaryOperator expression) { return expression; } /** * Calls the given {@link CharTernaryOperator} with the given arguments and returns its result. * * @param operator The operator to be called * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @param value3 The third argument to the operator * @return The result from the given {@code CharTernaryOperator}. * @throws NullPointerException If given argument is {@code null} */ static char call(@Nonnull final CharTernaryOperator operator, char value1, char value2, char value3) { Objects.requireNonNull(operator); return operator.applyAsChar(value1, value2, value3); } /** * Creates a {@link CharTernaryOperator} which uses the {@code first} parameter of this one as argument for the * given {@link CharUnaryOperator}. * * @param operator The operator which accepts the {@code first} parameter of this one * @return Creates a {@code CharTernaryOperator} which uses the {@code first} parameter of this one as argument for * the given {@code CharUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static CharTernaryOperator onlyFirst(@Nonnull final CharUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsChar(value1); } /** * Creates a {@link CharTernaryOperator} which uses the {@code second} parameter of this one as argument for the * given {@link CharUnaryOperator}. * * @param operator The operator which accepts the {@code second} parameter of this one * @return Creates a {@code CharTernaryOperator} which uses the {@code second} parameter of this one as argument for * the given {@code CharUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static CharTernaryOperator onlySecond(@Nonnull final CharUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsChar(value2); } /** * Creates a {@link CharTernaryOperator} which uses the {@code third} parameter of this one as argument for the * given {@link CharUnaryOperator}. * * @param operator The operator which accepts the {@code third} parameter of this one * @return Creates a {@code CharTernaryOperator} which uses the {@code third} parameter of this one as argument for * the given {@code CharUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static CharTernaryOperator onlyThird(@Nonnull final CharUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsChar(value3); } /** * Creates a {@link CharTernaryOperator} which always returns a given value. * * @param ret The return value for the constant * @return A {@code CharTernaryOperator} which always returns a given value. */ @Nonnull static CharTernaryOperator constant(char ret) { return (value1, value2, value3) -> ret; } /** * Applies this operator to the given arguments. * * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @param value3 The third argument to the operator * @return The return value from the operator, which is its result. */ char applyAsChar(char value1, char value2, char value3); /** * Applies this operator partially to some arguments of this one, producing a {@link CharBinaryOperator} as result. * * @param value1 The first argument to this operator used to partially apply this function * @return A {@code CharBinaryOperator} that represents this operator partially applied the some arguments. */ @Nonnull default CharBinaryOperator papplyAsChar(char value1) { return (value2, value3) -> this.applyAsChar(value1, value2, value3); } /** * Applies this operator partially to some arguments of this one, producing a {@link CharUnaryOperator} as result. * * @param value1 The first argument to this operator used to partially apply this function * @param value2 The second argument to this operator used to partially apply this function * @return A {@code CharUnaryOperator} that represents this operator partially applied the some arguments. */ @Nonnull default CharUnaryOperator papplyAsChar(char value1, char value2) { return (value3) -> this.applyAsChar(value1, value2, value3); } /** * Returns the number of arguments for this operator. * * @return The number of arguments for this operator. * @implSpec The default implementation always returns {@code 3}. */ @Nonnegative default int arity() { return 3; } /** * Returns a composed {@link ToCharTriFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param <C> The type of the argument to the third given function, and of composed function * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code ToCharTriFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B, C> ToCharTriFunction<A, B, C> compose(@Nonnull final ToCharFunction<? super A> before1, @Nonnull final ToCharFunction<? super B> before2, @Nonnull final ToCharFunction<? super C> before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (a, b, c) -> applyAsChar(before1.applyAsChar(a), before2.applyAsChar(b), before3.applyAsChar(c)); } /** * Returns a composed {@link TriBooleanToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriBooleanToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriBooleanToCharFunction composeFromBoolean(@Nonnull final BooleanToCharFunction before1, @Nonnull final BooleanToCharFunction before2, @Nonnull final BooleanToCharFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar(before1.applyAsChar(value1), before2.applyAsChar(value2), before3.applyAsChar(value3)); } /** * Returns a composed {@link TriByteToCharFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriByteToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default TriByteToCharFunction composeFromByte(@Nonnull final ByteToCharFunction before1, @Nonnull final ByteToCharFunction before2, @Nonnull final ByteToCharFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar(before1.applyAsChar(value1), before2.applyAsChar(value2), before3.applyAsChar(value3)); } /** * Returns a composed {@link CharTernaryOperator} that first applies the {@code before} operators to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive operator is executed. * * @param before1 The first operator to apply before this operator is applied * @param before2 The second operator to apply before this operator is applied * @param before3 The third operator to apply before this operator is applied * @return A composed {@code CharTernaryOperator} that first applies the {@code before} operators to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default CharTernaryOperator composeFromChar(@Nonnull final CharUnaryOperator before1, @Nonnull final CharUnaryOperator before2, @Nonnull final CharUnaryOperator before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar(before1.applyAsChar(value1), before2.applyAsChar(value2), before3.applyAsChar(value3)); } /** * Returns a composed {@link TriDoubleToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriDoubleToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default TriDoubleToCharFunction composeFromDouble(@Nonnull final DoubleToCharFunction before1, @Nonnull final DoubleToCharFunction before2, @Nonnull final DoubleToCharFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar(before1.applyAsChar(value1), before2.applyAsChar(value2), before3.applyAsChar(value3)); } /** * Returns a composed {@link TriFloatToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code float} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriFloatToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default TriFloatToCharFunction composeFromFloat(@Nonnull final FloatToCharFunction before1, @Nonnull final FloatToCharFunction before2, @Nonnull final FloatToCharFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar(before1.applyAsChar(value1), before2.applyAsChar(value2), before3.applyAsChar(value3)); } /** * Returns a composed {@link TriIntToCharFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriIntToCharFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default TriIntToCharFunction composeFromInt(@Nonnull final IntToCharFunction before1, @Nonnull final IntToCharFunction before2, @Nonnull final IntToCharFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar(before1.applyAsChar(value1), before2.applyAsChar(value2), before3.applyAsChar(value3)); } /** * Returns a composed {@link TriLongToCharFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriLongToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default TriLongToCharFunction composeFromLong(@Nonnull final LongToCharFunction before1, @Nonnull final LongToCharFunction before2, @Nonnull final LongToCharFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar(before1.applyAsChar(value1), before2.applyAsChar(value2), before3.applyAsChar(value3)); } /** * Returns a composed {@link TriShortToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code short} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriShortToCharFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default TriShortToCharFunction composeFromShort(@Nonnull final ShortToCharFunction before1, @Nonnull final ShortToCharFunction before2, @Nonnull final ShortToCharFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsChar(before1.applyAsChar(value1), before2.applyAsChar(value2), before3.applyAsChar(value3)); } /** * Returns a composed {@link TriCharFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this operator is applied * @return A composed {@code TriCharFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> TriCharFunction<S> andThen(@Nonnull final CharFunction<? extends S> after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.apply(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link TriCharPredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code boolean}. * * @param after The predicate to apply after this operator is applied * @return A composed {@code TriCharPredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriCharPredicate andThenToBoolean(@Nonnull final CharPredicate after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.test(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link TriCharToByteFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code byte}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriCharToByteFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default TriCharToByteFunction andThenToByte(@Nonnull final CharToByteFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsByte(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link CharTernaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code char}. * * @param after The operator to apply after this operator is applied * @return A composed {@code CharTernaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default CharTernaryOperator andThenToChar(@Nonnull final CharUnaryOperator after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsChar(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link TriCharToDoubleFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code double}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriCharToDoubleFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default TriCharToDoubleFunction andThenToDouble(@Nonnull final CharToDoubleFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsDouble(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link TriCharToFloatFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code float}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriCharToFloatFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default TriCharToFloatFunction andThenToFloat(@Nonnull final CharToFloatFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsFloat(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link TriCharToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code int}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriCharToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default TriCharToIntFunction andThenToInt(@Nonnull final CharToIntFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsInt(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link TriCharToLongFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code long}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriCharToLongFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default TriCharToLongFunction andThenToLong(@Nonnull final CharToLongFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsLong(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link TriCharToShortFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code short}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriCharToShortFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default TriCharToShortFunction andThenToShort(@Nonnull final CharToShortFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsShort(applyAsChar(value1, value2, value3)); } /** * Returns a composed {@link TriCharConsumer} that fist applies this operator to its input, and then consumes the * result using the given {@link CharConsumer}. If evaluation of either operation throws an exception, it is relayed * to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code TriCharConsumer} that first applies this operator to its input, and then consumes the * result using the given {@code CharConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default TriCharConsumer consume(@Nonnull final CharConsumer consumer) { Objects.requireNonNull(consumer); return (value1, value2, value3) -> consumer.accept(applyAsChar(value1, value2, value3)); } /** * Returns a memoized (caching) version of this {@link CharTernaryOperator}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the operator and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code CharTernaryOperator}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized operator, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized operator can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default CharTernaryOperator memoized() { if (isMemoized()) { return this; } else { final Map<Triple<Character, Character, Character>, Character> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (CharTernaryOperator & Memoized) (value1, value2, value3) -> { final char returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Triple.of(value1, value2, value3), key -> applyAsChar(key.getLeft(), key.getMiddle(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link TernaryOperator} which represents this {@link CharTernaryOperator}. Thereby the * primitive input argument for this operator is autoboxed. This method provides the possibility to use this {@code * CharTernaryOperator} with methods provided by the {@code JDK}. * * @return A composed {@code TernaryOperator} which represents this {@code CharTernaryOperator}. */ @Nonnull default TernaryOperator<Character> boxed() { return this::applyAsChar; } }