Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.operator.ternary; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.ByteConsumer; import at.gridtec.lambda4j.consumer.tri.TriByteConsumer; import at.gridtec.lambda4j.function.ByteFunction; import at.gridtec.lambda4j.function.conversion.BooleanToByteFunction; import at.gridtec.lambda4j.function.conversion.ByteToCharFunction; import at.gridtec.lambda4j.function.conversion.ByteToDoubleFunction; import at.gridtec.lambda4j.function.conversion.ByteToFloatFunction; import at.gridtec.lambda4j.function.conversion.ByteToIntFunction; import at.gridtec.lambda4j.function.conversion.ByteToLongFunction; import at.gridtec.lambda4j.function.conversion.ByteToShortFunction; import at.gridtec.lambda4j.function.conversion.CharToByteFunction; import at.gridtec.lambda4j.function.conversion.DoubleToByteFunction; import at.gridtec.lambda4j.function.conversion.FloatToByteFunction; import at.gridtec.lambda4j.function.conversion.IntToByteFunction; import at.gridtec.lambda4j.function.conversion.LongToByteFunction; import at.gridtec.lambda4j.function.conversion.ShortToByteFunction; import at.gridtec.lambda4j.function.to.ToByteFunction; import at.gridtec.lambda4j.function.tri.TriByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriBooleanToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToCharFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToDoubleFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToLongFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriIntToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriLongToByteFunction; import at.gridtec.lambda4j.function.tri.conversion.TriShortToByteFunction; import at.gridtec.lambda4j.function.tri.to.ToByteTriFunction; import at.gridtec.lambda4j.operator.binary.ByteBinaryOperator; import at.gridtec.lambda4j.operator.unary.ByteUnaryOperator; import at.gridtec.lambda4j.predicate.BytePredicate; import at.gridtec.lambda4j.predicate.tri.TriBytePredicate; import org.apache.commons.lang3.tuple.Triple; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; /** * Represents an operation that accepts three {@code byte}-valued input arguments and produces a * {@code byte}-valued result. * This is a primitive specialization of {@link TernaryOperator}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsByte(byte, byte, byte)}. * * @see TernaryOperator */ @SuppressWarnings("unused") @FunctionalInterface public interface ByteTernaryOperator extends Lambda { /** * Constructs a {@link ByteTernaryOperator} based on a lambda expression or a method reference. Thereby the given * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired * type. With this method, it is possible to ensure that correct type is used from lambda expression or method * reference. * * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code ByteTernaryOperator} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static ByteTernaryOperator of(@Nullable final ByteTernaryOperator expression) { return expression; } /** * Calls the given {@link ByteTernaryOperator} with the given arguments and returns its result. * * @param operator The operator to be called * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @param value3 The third argument to the operator * @return The result from the given {@code ByteTernaryOperator}. * @throws NullPointerException If given argument is {@code null} */ static byte call(@Nonnull final ByteTernaryOperator operator, byte value1, byte value2, byte value3) { Objects.requireNonNull(operator); return operator.applyAsByte(value1, value2, value3); } /** * Creates a {@link ByteTernaryOperator} which uses the {@code first} parameter of this one as argument for the * given {@link ByteUnaryOperator}. * * @param operator The operator which accepts the {@code first} parameter of this one * @return Creates a {@code ByteTernaryOperator} which uses the {@code first} parameter of this one as argument for * the given {@code ByteUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static ByteTernaryOperator onlyFirst(@Nonnull final ByteUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsByte(value1); } /** * Creates a {@link ByteTernaryOperator} which uses the {@code second} parameter of this one as argument for the * given {@link ByteUnaryOperator}. * * @param operator The operator which accepts the {@code second} parameter of this one * @return Creates a {@code ByteTernaryOperator} which uses the {@code second} parameter of this one as argument for * the given {@code ByteUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static ByteTernaryOperator onlySecond(@Nonnull final ByteUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsByte(value2); } /** * Creates a {@link ByteTernaryOperator} which uses the {@code third} parameter of this one as argument for the * given {@link ByteUnaryOperator}. * * @param operator The operator which accepts the {@code third} parameter of this one * @return Creates a {@code ByteTernaryOperator} which uses the {@code third} parameter of this one as argument for * the given {@code ByteUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static ByteTernaryOperator onlyThird(@Nonnull final ByteUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2, value3) -> operator.applyAsByte(value3); } /** * Creates a {@link ByteTernaryOperator} which always returns a given value. * * @param ret The return value for the constant * @return A {@code ByteTernaryOperator} which always returns a given value. */ @Nonnull static ByteTernaryOperator constant(byte ret) { return (value1, value2, value3) -> ret; } /** * Applies this operator to the given arguments. * * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @param value3 The third argument to the operator * @return The return value from the operator, which is its result. */ byte applyAsByte(byte value1, byte value2, byte value3); /** * Applies this operator partially to some arguments of this one, producing a {@link ByteBinaryOperator} as result. * * @param value1 The first argument to this operator used to partially apply this function * @return A {@code ByteBinaryOperator} that represents this operator partially applied the some arguments. */ @Nonnull default ByteBinaryOperator papplyAsByte(byte value1) { return (value2, value3) -> this.applyAsByte(value1, value2, value3); } /** * Applies this operator partially to some arguments of this one, producing a {@link ByteUnaryOperator} as result. * * @param value1 The first argument to this operator used to partially apply this function * @param value2 The second argument to this operator used to partially apply this function * @return A {@code ByteUnaryOperator} that represents this operator partially applied the some arguments. */ @Nonnull default ByteUnaryOperator papplyAsByte(byte value1, byte value2) { return (value3) -> this.applyAsByte(value1, value2, value3); } /** * Returns the number of arguments for this operator. * * @return The number of arguments for this operator. * @implSpec The default implementation always returns {@code 3}. */ @Nonnegative default int arity() { return 3; } /** * Returns a composed {@link ToByteTriFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param <C> The type of the argument to the third given function, and of composed function * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code ToByteTriFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B, C> ToByteTriFunction<A, B, C> compose(@Nonnull final ToByteFunction<? super A> before1, @Nonnull final ToByteFunction<? super B> before2, @Nonnull final ToByteFunction<? super C> before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (a, b, c) -> applyAsByte(before1.applyAsByte(a), before2.applyAsByte(b), before3.applyAsByte(c)); } /** * Returns a composed {@link TriBooleanToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriBooleanToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriBooleanToByteFunction composeFromBoolean(@Nonnull final BooleanToByteFunction before1, @Nonnull final BooleanToByteFunction before2, @Nonnull final BooleanToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsByte(before1.applyAsByte(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link ByteTernaryOperator} that first applies the {@code before} operators to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive operator is executed. * * @param before1 The first operator to apply before this operator is applied * @param before2 The second operator to apply before this operator is applied * @param before3 The third operator to apply before this operator is applied * @return A composed {@code ByteTernaryOperator} that first applies the {@code before} operators to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default ByteTernaryOperator composeFromByte(@Nonnull final ByteUnaryOperator before1, @Nonnull final ByteUnaryOperator before2, @Nonnull final ByteUnaryOperator before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsByte(before1.applyAsByte(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriCharToByteFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriCharToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default TriCharToByteFunction composeFromChar(@Nonnull final CharToByteFunction before1, @Nonnull final CharToByteFunction before2, @Nonnull final CharToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsByte(before1.applyAsByte(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriDoubleToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriDoubleToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default TriDoubleToByteFunction composeFromDouble(@Nonnull final DoubleToByteFunction before1, @Nonnull final DoubleToByteFunction before2, @Nonnull final DoubleToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsByte(before1.applyAsByte(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriFloatToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code float} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriFloatToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default TriFloatToByteFunction composeFromFloat(@Nonnull final FloatToByteFunction before1, @Nonnull final FloatToByteFunction before2, @Nonnull final FloatToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsByte(before1.applyAsByte(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriIntToByteFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriIntToByteFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default TriIntToByteFunction composeFromInt(@Nonnull final IntToByteFunction before1, @Nonnull final IntToByteFunction before2, @Nonnull final IntToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsByte(before1.applyAsByte(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriLongToByteFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriLongToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default TriLongToByteFunction composeFromLong(@Nonnull final LongToByteFunction before1, @Nonnull final LongToByteFunction before2, @Nonnull final LongToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsByte(before1.applyAsByte(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriShortToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code short} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @param before3 The third function to apply before this operator is applied * @return A composed {@code TriShortToByteFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default TriShortToByteFunction composeFromShort(@Nonnull final ShortToByteFunction before1, @Nonnull final ShortToByteFunction before2, @Nonnull final ShortToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsByte(before1.applyAsByte(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriByteFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this operator is applied * @return A composed {@code TriByteFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> TriByteFunction<S> andThen(@Nonnull final ByteFunction<? extends S> after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.apply(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link TriBytePredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code boolean}. * * @param after The predicate to apply after this operator is applied * @return A composed {@code TriBytePredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriBytePredicate andThenToBoolean(@Nonnull final BytePredicate after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.test(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link ByteTernaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code byte}. * * @param after The operator to apply after this operator is applied * @return A composed {@code ByteTernaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default ByteTernaryOperator andThenToByte(@Nonnull final ByteUnaryOperator after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsByte(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link TriByteToCharFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code char}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriByteToCharFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default TriByteToCharFunction andThenToChar(@Nonnull final ByteToCharFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsChar(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link TriByteToDoubleFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code double}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriByteToDoubleFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default TriByteToDoubleFunction andThenToDouble(@Nonnull final ByteToDoubleFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsDouble(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link TriByteToFloatFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code float}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriByteToFloatFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default TriByteToFloatFunction andThenToFloat(@Nonnull final ByteToFloatFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsFloat(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link TriByteToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code int}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriByteToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default TriByteToIntFunction andThenToInt(@Nonnull final ByteToIntFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsInt(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link TriByteToLongFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code long}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriByteToLongFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default TriByteToLongFunction andThenToLong(@Nonnull final ByteToLongFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsLong(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link TriByteToShortFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code short}. * * @param after The function to apply after this operator is applied * @return A composed {@code TriByteToShortFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default TriByteToShortFunction andThenToShort(@Nonnull final ByteToShortFunction after) { Objects.requireNonNull(after); return (value1, value2, value3) -> after.applyAsShort(applyAsByte(value1, value2, value3)); } /** * Returns a composed {@link TriByteConsumer} that fist applies this operator to its input, and then consumes the * result using the given {@link ByteConsumer}. If evaluation of either operation throws an exception, it is relayed * to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code TriByteConsumer} that first applies this operator to its input, and then consumes the * result using the given {@code ByteConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default TriByteConsumer consume(@Nonnull final ByteConsumer consumer) { Objects.requireNonNull(consumer); return (value1, value2, value3) -> consumer.accept(applyAsByte(value1, value2, value3)); } /** * Returns a memoized (caching) version of this {@link ByteTernaryOperator}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the operator and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code ByteTernaryOperator}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized operator, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized operator can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default ByteTernaryOperator memoized() { if (isMemoized()) { return this; } else { final Map<Triple<Byte, Byte, Byte>, Byte> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (ByteTernaryOperator & Memoized) (value1, value2, value3) -> { final byte returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Triple.of(value1, value2, value3), key -> applyAsByte(key.getLeft(), key.getMiddle(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link TernaryOperator} which represents this {@link ByteTernaryOperator}. Thereby the * primitive input argument for this operator is autoboxed. This method provides the possibility to use this {@code * ByteTernaryOperator} with methods provided by the {@code JDK}. * * @return A composed {@code TernaryOperator} which represents this {@code ByteTernaryOperator}. */ @Nonnull default TernaryOperator<Byte> boxed() { return this::applyAsByte; } }