Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.operator.binary; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.FloatConsumer; import at.gridtec.lambda4j.consumer.bi.BiFloatConsumer; import at.gridtec.lambda4j.function.FloatFunction; import at.gridtec.lambda4j.function.bi.BiFloatFunction; import at.gridtec.lambda4j.function.bi.conversion.BiBooleanToFloatFunction; import at.gridtec.lambda4j.function.bi.conversion.BiByteToFloatFunction; import at.gridtec.lambda4j.function.bi.conversion.BiCharToFloatFunction; import at.gridtec.lambda4j.function.bi.conversion.BiDoubleToFloatFunction; import at.gridtec.lambda4j.function.bi.conversion.BiFloatToByteFunction; import at.gridtec.lambda4j.function.bi.conversion.BiFloatToCharFunction; import at.gridtec.lambda4j.function.bi.conversion.BiFloatToDoubleFunction; import at.gridtec.lambda4j.function.bi.conversion.BiFloatToIntFunction; import at.gridtec.lambda4j.function.bi.conversion.BiFloatToLongFunction; import at.gridtec.lambda4j.function.bi.conversion.BiFloatToShortFunction; import at.gridtec.lambda4j.function.bi.conversion.BiIntToFloatFunction; import at.gridtec.lambda4j.function.bi.conversion.BiLongToFloatFunction; import at.gridtec.lambda4j.function.bi.conversion.BiShortToFloatFunction; import at.gridtec.lambda4j.function.bi.to.ToFloatBiFunction; import at.gridtec.lambda4j.function.conversion.BooleanToFloatFunction; import at.gridtec.lambda4j.function.conversion.ByteToFloatFunction; import at.gridtec.lambda4j.function.conversion.CharToFloatFunction; import at.gridtec.lambda4j.function.conversion.DoubleToFloatFunction; import at.gridtec.lambda4j.function.conversion.FloatToByteFunction; import at.gridtec.lambda4j.function.conversion.FloatToCharFunction; import at.gridtec.lambda4j.function.conversion.FloatToDoubleFunction; import at.gridtec.lambda4j.function.conversion.FloatToIntFunction; import at.gridtec.lambda4j.function.conversion.FloatToLongFunction; import at.gridtec.lambda4j.function.conversion.FloatToShortFunction; import at.gridtec.lambda4j.function.conversion.IntToFloatFunction; import at.gridtec.lambda4j.function.conversion.LongToFloatFunction; import at.gridtec.lambda4j.function.conversion.ShortToFloatFunction; import at.gridtec.lambda4j.function.to.ToFloatFunction; import at.gridtec.lambda4j.operator.unary.FloatUnaryOperator; import at.gridtec.lambda4j.predicate.FloatPredicate; import at.gridtec.lambda4j.predicate.bi.BiFloatPredicate; import org.apache.commons.lang3.tuple.Pair; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Comparator; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; import java.util.function.BinaryOperator; /** * Represents an operation that accepts two {@code float}-valued input arguments and produces a * {@code float}-valued result. * This is a primitive specialization of {@link BinaryOperator2}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsFloat(float, float)}. * * @see BinaryOperator2 */ @SuppressWarnings("unused") @FunctionalInterface public interface FloatBinaryOperator extends Lambda { /** * Constructs a {@link FloatBinaryOperator} based on a lambda expression or a method reference. Thereby the given * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired * type. With this method, it is possible to ensure that correct type is used from lambda expression or method * reference. * * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code FloatBinaryOperator} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static FloatBinaryOperator of(@Nullable final FloatBinaryOperator expression) { return expression; } /** * Calls the given {@link FloatBinaryOperator} with the given arguments and returns its result. * * @param operator The operator to be called * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @return The result from the given {@code FloatBinaryOperator}. * @throws NullPointerException If given argument is {@code null} */ static float call(@Nonnull final FloatBinaryOperator operator, float value1, float value2) { Objects.requireNonNull(operator); return operator.applyAsFloat(value1, value2); } /** * Creates a {@link FloatBinaryOperator} which uses the {@code first} parameter of this one as argument for the * given {@link FloatUnaryOperator}. * * @param operator The operator which accepts the {@code first} parameter of this one * @return Creates a {@code FloatBinaryOperator} which uses the {@code first} parameter of this one as argument for * the given {@code FloatUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static FloatBinaryOperator onlyFirst(@Nonnull final FloatUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2) -> operator.applyAsFloat(value1); } /** * Creates a {@link FloatBinaryOperator} which uses the {@code second} parameter of this one as argument for the * given {@link FloatUnaryOperator}. * * @param operator The operator which accepts the {@code second} parameter of this one * @return Creates a {@code FloatBinaryOperator} which uses the {@code second} parameter of this one as argument for * the given {@code FloatUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static FloatBinaryOperator onlySecond(@Nonnull final FloatUnaryOperator operator) { Objects.requireNonNull(operator); return (value1, value2) -> operator.applyAsFloat(value2); } /** * Creates a {@link FloatBinaryOperator} which always returns a given value. * * @param ret The return value for the constant * @return A {@code FloatBinaryOperator} which always returns a given value. */ @Nonnull static FloatBinaryOperator constant(float ret) { return (value1, value2) -> ret; } /** * Returns a {@link FloatBinaryOperator} which returns the lesser of two elements according to the specified {@code * Comparator}. * * @param comparator A {@code Comparator} for comparing the two values * @return A {@code FloatBinaryOperator} which returns the lesser of its operands, according to the supplied {@code * Comparator}. * @throws NullPointerException If given argument is {@code null} * @see BinaryOperator#minBy(Comparator) */ @Nonnull static FloatBinaryOperator minBy(@Nonnull final Comparator<Float> comparator) { Objects.requireNonNull(comparator); return (value1, value2) -> comparator.compare(value1, value2) <= 0 ? value1 : value2; } /** * Returns a {@link FloatBinaryOperator} which returns the greater of two elements according to the specified {@code * Comparator}. * * @param comparator A {@code Comparator} for comparing the two values * @return A {@code FloatBinaryOperator} which returns the greater of its operands, according to the supplied {@code * Comparator}. * @throws NullPointerException If given argument is {@code null} * @see BinaryOperator#maxBy(Comparator) */ @Nonnull static FloatBinaryOperator maxBy(@Nonnull final Comparator<Float> comparator) { Objects.requireNonNull(comparator); return (value1, value2) -> comparator.compare(value1, value2) >= 0 ? value1 : value2; } /** * Applies this operator to the given arguments. * * @param value1 The first argument to the operator * @param value2 The second argument to the operator * @return The return value from the operator, which is its result. */ float applyAsFloat(float value1, float value2); /** * Applies this operator partially to some arguments of this one, producing a {@link FloatUnaryOperator} as result. * * @param value1 The first argument to this operator used to partially apply this function * @return A {@code FloatUnaryOperator} that represents this operator partially applied the some arguments. */ @Nonnull default FloatUnaryOperator papplyAsFloat(float value1) { return (value2) -> this.applyAsFloat(value1, value2); } /** * Returns the number of arguments for this operator. * * @return The number of arguments for this operator. * @implSpec The default implementation always returns {@code 2}. */ @Nonnegative default int arity() { return 2; } /** * Returns a composed {@link ToFloatBiFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @return A composed {@code ToFloatBiFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B> ToFloatBiFunction<A, B> compose(@Nonnull final ToFloatFunction<? super A> before1, @Nonnull final ToFloatFunction<? super B> before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (a, b) -> applyAsFloat(before1.applyAsFloat(a), before2.applyAsFloat(b)); } /** * Returns a composed {@link BiBooleanToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @return A composed {@code BiBooleanToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default BiBooleanToFloatFunction composeFromBoolean(@Nonnull final BooleanToFloatFunction before1, @Nonnull final BooleanToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiByteToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @return A composed {@code BiByteToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default BiByteToFloatFunction composeFromByte(@Nonnull final ByteToFloatFunction before1, @Nonnull final ByteToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiCharToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @return A composed {@code BiCharToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default BiCharToFloatFunction composeFromChar(@Nonnull final CharToFloatFunction before1, @Nonnull final CharToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiDoubleToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @return A composed {@code BiDoubleToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default BiDoubleToFloatFunction composeFromDouble(@Nonnull final DoubleToFloatFunction before1, @Nonnull final DoubleToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link FloatBinaryOperator} that first applies the {@code before} operators to its input, and * then applies this operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to execute an * operation which accepts {@code float} input, before this primitive operator is executed. * * @param before1 The first operator to apply before this operator is applied * @param before2 The second operator to apply before this operator is applied * @return A composed {@code FloatBinaryOperator} that first applies the {@code before} operators to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default FloatBinaryOperator composeFromFloat(@Nonnull final FloatUnaryOperator before1, @Nonnull final FloatUnaryOperator before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiIntToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @return A composed {@code BiIntToFloatFunction} that first applies the {@code before} functions to its input, and * then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default BiIntToFloatFunction composeFromInt(@Nonnull final IntToFloatFunction before1, @Nonnull final IntToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiLongToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this operator to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @return A composed {@code BiLongToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default BiLongToFloatFunction composeFromLong(@Nonnull final LongToFloatFunction before1, @Nonnull final LongToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiShortToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code short} input, before this primitive operator is executed. * * @param before1 The first function to apply before this operator is applied * @param before2 The second function to apply before this operator is applied * @return A composed {@code BiShortToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default BiShortToFloatFunction composeFromShort(@Nonnull final ShortToFloatFunction before1, @Nonnull final ShortToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsFloat(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiFloatFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this operator is applied * @return A composed {@code BiFloatFunction} that first applies this operator to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> BiFloatFunction<S> andThen(@Nonnull final FloatFunction<? extends S> after) { Objects.requireNonNull(after); return (value1, value2) -> after.apply(applyAsFloat(value1, value2)); } /** * Returns a composed {@link BiFloatPredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code boolean}. * * @param after The predicate to apply after this operator is applied * @return A composed {@code BiFloatPredicate} that first applies this operator to its input, and then applies the * {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default BiFloatPredicate andThenToBoolean(@Nonnull final FloatPredicate after) { Objects.requireNonNull(after); return (value1, value2) -> after.test(applyAsFloat(value1, value2)); } /** * Returns a composed {@link BiFloatToByteFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code byte}. * * @param after The function to apply after this operator is applied * @return A composed {@code BiFloatToByteFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default BiFloatToByteFunction andThenToByte(@Nonnull final FloatToByteFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsByte(applyAsFloat(value1, value2)); } /** * Returns a composed {@link BiFloatToCharFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code char}. * * @param after The function to apply after this operator is applied * @return A composed {@code BiFloatToCharFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default BiFloatToCharFunction andThenToChar(@Nonnull final FloatToCharFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsChar(applyAsFloat(value1, value2)); } /** * Returns a composed {@link BiFloatToDoubleFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive operator to an operation returning {@code double}. * * @param after The function to apply after this operator is applied * @return A composed {@code BiFloatToDoubleFunction} that first applies this operator to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default BiFloatToDoubleFunction andThenToDouble(@Nonnull final FloatToDoubleFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsDouble(applyAsFloat(value1, value2)); } /** * Returns a composed {@link FloatBinaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code float}. * * @param after The operator to apply after this operator is applied * @return A composed {@code FloatBinaryOperator} that first applies this operator to its input, and then applies * the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default FloatBinaryOperator andThenToFloat(@Nonnull final FloatUnaryOperator after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsFloat(applyAsFloat(value1, value2)); } /** * Returns a composed {@link BiFloatToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code int}. * * @param after The function to apply after this operator is applied * @return A composed {@code BiFloatToIntFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default BiFloatToIntFunction andThenToInt(@Nonnull final FloatToIntFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsInt(applyAsFloat(value1, value2)); } /** * Returns a composed {@link BiFloatToLongFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code long}. * * @param after The function to apply after this operator is applied * @return A composed {@code BiFloatToLongFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default BiFloatToLongFunction andThenToLong(@Nonnull final FloatToLongFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsLong(applyAsFloat(value1, value2)); } /** * Returns a composed {@link BiFloatToShortFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive operator to an operation returning {@code short}. * * @param after The function to apply after this operator is applied * @return A composed {@code BiFloatToShortFunction} that first applies this operator to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default BiFloatToShortFunction andThenToShort(@Nonnull final FloatToShortFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsShort(applyAsFloat(value1, value2)); } /** * Returns a composed {@link BiFloatConsumer} that fist applies this operator to its input, and then consumes the * result using the given {@link FloatConsumer}. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code BiFloatConsumer} that first applies this operator to its input, and then consumes the * result using the given {@code FloatConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default BiFloatConsumer consume(@Nonnull final FloatConsumer consumer) { Objects.requireNonNull(consumer); return (value1, value2) -> consumer.accept(applyAsFloat(value1, value2)); } /** * Returns a memoized (caching) version of this {@link FloatBinaryOperator}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the operator and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code FloatBinaryOperator}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized operator, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized operator can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default FloatBinaryOperator memoized() { if (isMemoized()) { return this; } else { final Map<Pair<Float, Float>, Float> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (FloatBinaryOperator & Memoized) (value1, value2) -> { final float returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Pair.of(value1, value2), key -> applyAsFloat(key.getLeft(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link BinaryOperator2} which represents this {@link FloatBinaryOperator}. Thereby the * primitive input argument for this operator is autoboxed. This method provides the possibility to use this {@code * FloatBinaryOperator} with methods provided by the {@code JDK}. * * @return A composed {@code BinaryOperator2} which represents this {@code FloatBinaryOperator}. */ @Nonnull default BinaryOperator2<Float> boxed() { return this::applyAsFloat; } }