at.gridtec.lambda4j.function.tri.obj.ObjBiIntFunction.java Source code

Java tutorial

Introduction

Here is the source code for at.gridtec.lambda4j.function.tri.obj.ObjBiIntFunction.java

Source

/*
 * Copyright (c) 2016 Gridtec. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package at.gridtec.lambda4j.function.tri.obj;

import at.gridtec.lambda4j.Lambda;
import at.gridtec.lambda4j.consumer.tri.obj.ObjBiIntConsumer;
import at.gridtec.lambda4j.function.BooleanFunction;
import at.gridtec.lambda4j.function.ByteFunction;
import at.gridtec.lambda4j.function.CharFunction;
import at.gridtec.lambda4j.function.FloatFunction;
import at.gridtec.lambda4j.function.Function2;
import at.gridtec.lambda4j.function.IntFunction2;
import at.gridtec.lambda4j.function.ShortFunction;
import at.gridtec.lambda4j.function.bi.BiIntFunction;
import at.gridtec.lambda4j.function.bi.obj.ObjIntFunction;
import at.gridtec.lambda4j.function.conversion.BooleanToIntFunction;
import at.gridtec.lambda4j.function.conversion.ByteToIntFunction;
import at.gridtec.lambda4j.function.conversion.CharToIntFunction;
import at.gridtec.lambda4j.function.conversion.FloatToIntFunction;
import at.gridtec.lambda4j.function.conversion.ShortToIntFunction;
import at.gridtec.lambda4j.function.tri.TriBooleanFunction;
import at.gridtec.lambda4j.function.tri.TriByteFunction;
import at.gridtec.lambda4j.function.tri.TriCharFunction;
import at.gridtec.lambda4j.function.tri.TriDoubleFunction;
import at.gridtec.lambda4j.function.tri.TriFloatFunction;
import at.gridtec.lambda4j.function.tri.TriFunction;
import at.gridtec.lambda4j.function.tri.TriIntFunction;
import at.gridtec.lambda4j.function.tri.TriLongFunction;
import at.gridtec.lambda4j.function.tri.TriShortFunction;

import org.apache.commons.lang3.tuple.Triple;

import javax.annotation.Nonnegative;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.concurrent.ConcurrentHashMap;
import java.util.function.Consumer;
import java.util.function.DoubleFunction;
import java.util.function.DoubleToIntFunction;
import java.util.function.Function;
import java.util.function.IntFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.LongFunction;
import java.util.function.LongToIntFunction;
import java.util.function.ToIntFunction;

/**
 * Represents an operation that accepts one object-valued and two {@code int}-valued input arguments and produces a
 * result.
 * This is a (reference, int, int) specialization of {@link TriFunction}.
 * <p>
 * This is a {@link FunctionalInterface} whose functional method is {@link #apply(Object, int, int)}.
 *
 * @param <T> The type of the first argument to the function
 * @param <R> The type of return value from the function
 * @see TriFunction
 */
@SuppressWarnings("unused")
@FunctionalInterface
public interface ObjBiIntFunction<T, R> extends Lambda {

    /**
     * Constructs a {@link ObjBiIntFunction} based on a lambda expression or a method reference. Thereby the given
     * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired
     * type. With this method, it is possible to ensure that correct type is used from lambda expression or method
     * reference.
     *
     * @param <T> The type of the first argument to the function
     * @param <R> The type of return value from the function
     * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method}
     * @return A {@code ObjBiIntFunction} from given lambda expression or method reference.
     * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given,
     * {@code null} will be returned.
     * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda
     * Expression</a>
     * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a>
     */
    static <T, R> ObjBiIntFunction<T, R> of(@Nullable final ObjBiIntFunction<T, R> expression) {
        return expression;
    }

    /**
     * Lifts a partial {@link ObjBiIntFunction} into a total {@link ObjBiIntFunction} that returns an {@link Optional}
     * result.
     *
     * @param <T> The type of the first argument to the function
     * @param <R> The type of return value from the function
     * @param partial A function that is only defined for some values in its domain
     * @return A partial {@code ObjBiIntFunction} lifted into a total {@code ObjBiIntFunction} that returns an {@code
     * Optional} result.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    static <T, R> ObjBiIntFunction<T, Optional<R>> lift(
            @Nonnull final ObjBiIntFunction<? super T, ? extends R> partial) {
        Objects.requireNonNull(partial);
        return (t, value1, value2) -> Optional.ofNullable(partial.apply(t, value1, value2));
    }

    /**
     * Calls the given {@link ObjBiIntFunction} with the given arguments and returns its result.
     *
     * @param <T> The type of the first argument to the function
     * @param <R> The type of return value from the function
     * @param function The function to be called
     * @param t The first argument to the function
     * @param value1 The second argument to the function
     * @param value2 The third argument to the function
     * @return The result from the given {@code ObjBiIntFunction}.
     * @throws NullPointerException If given argument is {@code null}
     */
    static <T, R> R call(@Nonnull final ObjBiIntFunction<? super T, ? extends R> function, T t, int value1,
            int value2) {
        Objects.requireNonNull(function);
        return function.apply(t, value1, value2);
    }

    /**
     * Creates a {@link ObjBiIntFunction} which uses the {@code first} parameter of this one as argument for the given
     * {@link Function}.
     *
     * @param <T> The type of the first argument to the function
     * @param <R> The type of return value from the function
     * @param function The function which accepts the {@code first} parameter of this one
     * @return Creates a {@code ObjBiIntFunction} which uses the {@code first} parameter of this one as argument for the
     * given {@code Function}.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    static <T, R> ObjBiIntFunction<T, R> onlyFirst(@Nonnull final Function<? super T, ? extends R> function) {
        Objects.requireNonNull(function);
        return (t, value1, value2) -> function.apply(t);
    }

    /**
     * Creates a {@link ObjBiIntFunction} which uses the {@code second} parameter of this one as argument for the given
     * {@link IntFunction}.
     *
     * @param <T> The type of the first argument to the function
     * @param <R> The type of return value from the function
     * @param function The function which accepts the {@code second} parameter of this one
     * @return Creates a {@code ObjBiIntFunction} which uses the {@code second} parameter of this one as argument for
     * the given {@code IntFunction}.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    static <T, R> ObjBiIntFunction<T, R> onlySecond(@Nonnull final IntFunction<? extends R> function) {
        Objects.requireNonNull(function);
        return (t, value1, value2) -> function.apply(value1);
    }

    /**
     * Creates a {@link ObjBiIntFunction} which uses the {@code third} parameter of this one as argument for the given
     * {@link IntFunction}.
     *
     * @param <T> The type of the first argument to the function
     * @param <R> The type of return value from the function
     * @param function The function which accepts the {@code third} parameter of this one
     * @return Creates a {@code ObjBiIntFunction} which uses the {@code third} parameter of this one as argument for the
     * given {@code IntFunction}.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    static <T, R> ObjBiIntFunction<T, R> onlyThird(@Nonnull final IntFunction<? extends R> function) {
        Objects.requireNonNull(function);
        return (t, value1, value2) -> function.apply(value2);
    }

    /**
     * Creates a {@link ObjBiIntFunction} which always returns a given value.
     *
     * @param <T> The type of the first argument to the function
     * @param <R> The type of return value from the function
     * @param ret The return value for the constant
     * @return A {@code ObjBiIntFunction} which always returns a given value.
     */
    @Nonnull
    static <T, R> ObjBiIntFunction<T, R> constant(R ret) {
        return (t, value1, value2) -> ret;
    }

    /**
     * Applies this function to the given arguments.
     *
     * @param t The first argument to the function
     * @param value1 The second argument to the function
     * @param value2 The third argument to the function
     * @return The return value from the function, which is its result.
     */
    R apply(T t, int value1, int value2);

    /**
     * Applies this function partially to some arguments of this one, producing a {@link BiIntFunction} as result.
     *
     * @param t The first argument to this function used to partially apply this function
     * @return A {@code BiIntFunction} that represents this function partially applied the some arguments.
     */
    @Nonnull
    default BiIntFunction<R> papply(T t) {
        return (value1, value2) -> this.apply(t, value1, value2);
    }

    /**
     * Applies this function partially to some arguments of this one, producing a {@link IntFunction2} as result.
     *
     * @param t The first argument to this function used to partially apply this function
     * @param value1 The second argument to this function used to partially apply this function
     * @return A {@code IntFunction2} that represents this function partially applied the some arguments.
     */
    @Nonnull
    default IntFunction2<R> papply(T t, int value1) {
        return (value2) -> this.apply(t, value1, value2);
    }

    /**
     * Applies this function partially to some arguments of this one, producing a {@link ObjIntFunction} as result.
     *
     * @param value1 The second argument to this function used to partially apply this function
     * @return A {@code ObjIntFunction} that represents this function partially applied the some arguments.
     */
    @Nonnull
    default ObjIntFunction<T, R> papply(int value1) {
        return (t, value2) -> this.apply(t, value1, value2);
    }

    /**
     * Applies this function partially to some arguments of this one, producing a {@link Function2} as result.
     *
     * @param value1 The second argument to this function used to partially apply this function
     * @param value2 The third argument to this function used to partially apply this function
     * @return A {@code Function2} that represents this function partially applied the some arguments.
     */
    @Nonnull
    default Function2<T, R> papply(int value1, int value2) {
        return (t) -> this.apply(t, value1, value2);
    }

    /**
     * Returns the number of arguments for this function.
     *
     * @return The number of arguments for this function.
     * @implSpec The default implementation always returns {@code 3}.
     */
    @Nonnegative
    default int arity() {
        return 3;
    }

    /**
     * Returns a composed {@link TriFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     *
     * @param <A> The type of the argument to the first given function, and of composed function
     * @param <B> The type of the argument to the second given function, and of composed function
     * @param <C> The type of the argument to the third given function, and of composed function
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second function to apply before this function is applied
     * @param before3 The third function to apply before this function is applied
     * @return A composed {@code TriFunction} that first applies the {@code before} functions to its input, and then
     * applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is able to handle every type.
     */
    @Nonnull
    default <A, B, C> TriFunction<A, B, C, R> compose(@Nonnull final Function<? super A, ? extends T> before1,
            @Nonnull final ToIntFunction<? super B> before2, @Nonnull final ToIntFunction<? super C> before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (a, b, c) -> apply(before1.apply(a), before2.applyAsInt(b), before3.applyAsInt(c));
    }

    /**
     * Returns a composed {@link TriBooleanFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to execute an
     * operation which accepts {@code boolean} input, before this primitive function is executed.
     *
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second function to apply before this function is applied
     * @param before3 The third function to apply before this function is applied
     * @return A composed {@code TriBooleanFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * boolean}.
     */
    @Nonnull
    default TriBooleanFunction<R> composeFromBoolean(@Nonnull final BooleanFunction<? extends T> before1,
            @Nonnull final BooleanToIntFunction before2, @Nonnull final BooleanToIntFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> apply(before1.apply(value1), before2.applyAsInt(value2),
                before3.applyAsInt(value3));
    }

    /**
     * Returns a composed {@link TriByteFunction} that first applies the {@code before} functions to
     * its input, and then applies this function to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input,
     * before this primitive function is executed.
     *
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second function to apply before this function is applied
     * @param before3 The third function to apply before this function is applied
     * @return A composed {@code TriByteFunction} that first applies the {@code before} functions to its input, and then
     * applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * byte}.
     */
    @Nonnull
    default TriByteFunction<R> composeFromByte(@Nonnull final ByteFunction<? extends T> before1,
            @Nonnull final ByteToIntFunction before2, @Nonnull final ByteToIntFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> apply(before1.apply(value1), before2.applyAsInt(value2),
                before3.applyAsInt(value3));
    }

    /**
     * Returns a composed {@link TriCharFunction} that first applies the {@code before} functions to
     * its input, and then applies this function to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input,
     * before this primitive function is executed.
     *
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second function to apply before this function is applied
     * @param before3 The third function to apply before this function is applied
     * @return A composed {@code TriCharFunction} that first applies the {@code before} functions to its input, and then
     * applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * char}.
     */
    @Nonnull
    default TriCharFunction<R> composeFromChar(@Nonnull final CharFunction<? extends T> before1,
            @Nonnull final CharToIntFunction before2, @Nonnull final CharToIntFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> apply(before1.apply(value1), before2.applyAsInt(value2),
                before3.applyAsInt(value3));
    }

    /**
     * Returns a composed {@link TriDoubleFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to execute an
     * operation which accepts {@code double} input, before this primitive function is executed.
     *
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second function to apply before this function is applied
     * @param before3 The third function to apply before this function is applied
     * @return A composed {@code TriDoubleFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * double}.
     */
    @Nonnull
    default TriDoubleFunction<R> composeFromDouble(@Nonnull final DoubleFunction<? extends T> before1,
            @Nonnull final DoubleToIntFunction before2, @Nonnull final DoubleToIntFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> apply(before1.apply(value1), before2.applyAsInt(value2),
                before3.applyAsInt(value3));
    }

    /**
     * Returns a composed {@link TriFloatFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to execute an
     * operation which accepts {@code float} input, before this primitive function is executed.
     *
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second function to apply before this function is applied
     * @param before3 The third function to apply before this function is applied
     * @return A composed {@code TriFloatFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * float}.
     */
    @Nonnull
    default TriFloatFunction<R> composeFromFloat(@Nonnull final FloatFunction<? extends T> before1,
            @Nonnull final FloatToIntFunction before2, @Nonnull final FloatToIntFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> apply(before1.apply(value1), before2.applyAsInt(value2),
                before3.applyAsInt(value3));
    }

    /**
     * Returns a composed {@link TriIntFunction} that first applies the {@code before} functions to
     * its input, and then applies this function to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input,
     * before this primitive function is executed.
     *
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second operator to apply before this function is applied
     * @param before3 The third operator to apply before this function is applied
     * @return A composed {@code TriIntFunction} that first applies the {@code before} functions to its input, and then
     * applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * int}.
     */
    @Nonnull
    default TriIntFunction<R> composeFromInt(@Nonnull final IntFunction<? extends T> before1,
            @Nonnull final IntUnaryOperator before2, @Nonnull final IntUnaryOperator before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> apply(before1.apply(value1), before2.applyAsInt(value2),
                before3.applyAsInt(value3));
    }

    /**
     * Returns a composed {@link TriLongFunction} that first applies the {@code before} functions to
     * its input, and then applies this function to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input,
     * before this primitive function is executed.
     *
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second function to apply before this function is applied
     * @param before3 The third function to apply before this function is applied
     * @return A composed {@code TriLongFunction} that first applies the {@code before} functions to its input, and then
     * applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * long}.
     */
    @Nonnull
    default TriLongFunction<R> composeFromLong(@Nonnull final LongFunction<? extends T> before1,
            @Nonnull final LongToIntFunction before2, @Nonnull final LongToIntFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> apply(before1.apply(value1), before2.applyAsInt(value2),
                before3.applyAsInt(value3));
    }

    /**
     * Returns a composed {@link TriShortFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to execute an
     * operation which accepts {@code short} input, before this primitive function is executed.
     *
     * @param before1 The first function to apply before this function is applied
     * @param before2 The second function to apply before this function is applied
     * @param before3 The third function to apply before this function is applied
     * @return A composed {@code TriShortFunction} that first applies the {@code before} functions to its input, and
     * then applies this function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * short}.
     */
    @Nonnull
    default TriShortFunction<R> composeFromShort(@Nonnull final ShortFunction<? extends T> before1,
            @Nonnull final ShortToIntFunction before2, @Nonnull final ShortToIntFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> apply(before1.apply(value1), before2.applyAsInt(value2),
                before3.applyAsInt(value3));
    }

    /**
     * Returns a composed {@link ObjBiIntFunction} that first applies this function to its input, and then applies the
     * {@code after} function to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     *
     * @param <S> The type of return value from the {@code after} function, and of the composed function
     * @param after The function to apply after this function is applied
     * @return A composed {@code ObjBiIntFunction} that first applies this function to its input, and then applies the
     * {@code after} function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is able to return every type.
     */
    @Nonnull
    default <S> ObjBiIntFunction<T, S> andThen(@Nonnull final Function<? super R, ? extends S> after) {
        Objects.requireNonNull(after);
        return (t, value1, value2) -> after.apply(apply(t, value1, value2));
    }

    /**
     * Returns a composed {@link ObjBiIntConsumer} that fist applies this function to its input, and then consumes the
     * result using the given {@link Consumer}. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation.
     *
     * @param consumer The operation which consumes the result from this operation
     * @return A composed {@code ObjBiIntConsumer} that first applies this function to its input, and then consumes the
     * result using the given {@code Consumer}.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    default ObjBiIntConsumer<T> consume(@Nonnull final Consumer<? super R> consumer) {
        Objects.requireNonNull(consumer);
        return (t, value1, value2) -> consumer.accept(apply(t, value1, value2));
    }

    /**
     * Returns a memoized (caching) version of this {@link ObjBiIntFunction}. Whenever it is called, the mapping between
     * the input parameters and the return value is preserved in a cache, making subsequent calls returning the memoized
     * value instead of computing the return value again.
     * <p>
     * Unless the function and therefore the used cache will be garbage-collected, it will keep all memoized values
     * forever.
     *
     * @return A memoized (caching) version of this {@code ObjBiIntFunction}.
     * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the
     * resulting memoized function, as the cache used internally does not permit {@code null} keys or values.
     * @implNote The returned memoized function can be safely used concurrently from multiple threads which makes it
     * thread-safe.
     */
    @Nonnull
    default ObjBiIntFunction<T, R> memoized() {
        if (isMemoized()) {
            return this;
        } else {
            final Map<Triple<T, Integer, Integer>, R> cache = new ConcurrentHashMap<>();
            final Object lock = new Object();
            return (ObjBiIntFunction<T, R> & Memoized) (t, value1, value2) -> {
                final R returnValue;
                synchronized (lock) {
                    returnValue = cache.computeIfAbsent(Triple.of(t, value1, value2),
                            key -> apply(key.getLeft(), key.getMiddle(), key.getRight()));
                }
                return returnValue;
            };
        }
    }

    /**
     * Converts this function to an equal function, which ensures that its result is not
     * {@code null} using {@link Optional}. This method mainly exists to avoid unnecessary {@code NullPointerException}s
     * through referencing {@code null} from this function.
     *
     * @return An equal function, which ensures that its result is not {@code null}.
     * @deprecated Use {@code lift} method for lifting this function.
     */
    @Deprecated
    @Nonnull
    default ObjBiIntFunction<T, Optional<R>> nonNull() {
        return (t, value1, value2) -> Optional.ofNullable(apply(t, value1, value2));
    }

    /**
     * Returns a composed {@link TriFunction} which represents this {@link ObjBiIntFunction}. Thereby the primitive
     * input argument for this function is autoboxed. This method provides the possibility to use this
     * {@code ObjBiIntFunction} with methods provided by the {@code JDK}.
     *
     * @return A composed {@code TriFunction} which represents this {@code ObjBiIntFunction}.
     */
    @Nonnull
    default TriFunction<T, Integer, Integer, R> boxed() {
        return this::apply;
    }

}