Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.function.tri.obj; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.FloatConsumer; import at.gridtec.lambda4j.consumer.tri.obj.ObjBiByteConsumer; import at.gridtec.lambda4j.function.BooleanFunction; import at.gridtec.lambda4j.function.ByteFunction; import at.gridtec.lambda4j.function.CharFunction; import at.gridtec.lambda4j.function.FloatFunction; import at.gridtec.lambda4j.function.ShortFunction; import at.gridtec.lambda4j.function.bi.conversion.BiByteToFloatFunction; import at.gridtec.lambda4j.function.bi.obj.ObjByteToFloatFunction; import at.gridtec.lambda4j.function.conversion.BooleanToByteFunction; import at.gridtec.lambda4j.function.conversion.ByteToFloatFunction; import at.gridtec.lambda4j.function.conversion.CharToByteFunction; import at.gridtec.lambda4j.function.conversion.DoubleToByteFunction; import at.gridtec.lambda4j.function.conversion.FloatToByteFunction; import at.gridtec.lambda4j.function.conversion.FloatToCharFunction; import at.gridtec.lambda4j.function.conversion.FloatToDoubleFunction; import at.gridtec.lambda4j.function.conversion.FloatToIntFunction; import at.gridtec.lambda4j.function.conversion.FloatToLongFunction; import at.gridtec.lambda4j.function.conversion.FloatToShortFunction; import at.gridtec.lambda4j.function.conversion.IntToByteFunction; import at.gridtec.lambda4j.function.conversion.LongToByteFunction; import at.gridtec.lambda4j.function.conversion.ShortToByteFunction; import at.gridtec.lambda4j.function.to.ToByteFunction; import at.gridtec.lambda4j.function.to.ToFloatFunction; import at.gridtec.lambda4j.function.tri.TriFunction; import at.gridtec.lambda4j.function.tri.conversion.TriBooleanToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriIntToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriLongToFloatFunction; import at.gridtec.lambda4j.function.tri.conversion.TriShortToFloatFunction; import at.gridtec.lambda4j.function.tri.to.ToFloatTriFunction; import at.gridtec.lambda4j.operator.ternary.FloatTernaryOperator; import at.gridtec.lambda4j.operator.unary.ByteUnaryOperator; import at.gridtec.lambda4j.operator.unary.FloatUnaryOperator; import at.gridtec.lambda4j.predicate.FloatPredicate; import at.gridtec.lambda4j.predicate.tri.obj.ObjBiBytePredicate; import org.apache.commons.lang3.tuple.Triple; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; import java.util.function.DoubleFunction; import java.util.function.Function; import java.util.function.IntFunction; import java.util.function.LongFunction; /** * Represents an operation that accepts one object-valued and two {@code byte}-valued input arguments and produces a * {@code float}-valued result. * This is a (reference, byte, byte) specialization of {@link TriFunction}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsFloat(Object, byte, byte)}. * * @param <T> The type of the first argument to the function * @see TriFunction */ @SuppressWarnings("unused") @FunctionalInterface public interface ObjBiByteToFloatFunction<T> extends Lambda { /** * Constructs a {@link ObjBiByteToFloatFunction} based on a lambda expression or a method reference. Thereby the * given lambda expression or method reference is returned on an as-is basis to implicitly transform it to the * desired type. With this method, it is possible to ensure that correct type is used from lambda expression or * method reference. * * @param <T> The type of the first argument to the function * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code ObjBiByteToFloatFunction} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static <T> ObjBiByteToFloatFunction<T> of(@Nullable final ObjBiByteToFloatFunction<T> expression) { return expression; } /** * Calls the given {@link ObjBiByteToFloatFunction} with the given arguments and returns its result. * * @param <T> The type of the first argument to the function * @param function The function to be called * @param t The first argument to the function * @param value1 The second argument to the function * @param value2 The third argument to the function * @return The result from the given {@code ObjBiByteToFloatFunction}. * @throws NullPointerException If given argument is {@code null} */ static <T> float call(@Nonnull final ObjBiByteToFloatFunction<? super T> function, T t, byte value1, byte value2) { Objects.requireNonNull(function); return function.applyAsFloat(t, value1, value2); } /** * Creates a {@link ObjBiByteToFloatFunction} which uses the {@code first} parameter of this one as argument for the * given {@link ToFloatFunction}. * * @param <T> The type of the first argument to the function * @param function The function which accepts the {@code first} parameter of this one * @return Creates a {@code ObjBiByteToFloatFunction} which uses the {@code first} parameter of this one as argument * for the given {@code ToFloatFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T> ObjBiByteToFloatFunction<T> onlyFirst(@Nonnull final ToFloatFunction<? super T> function) { Objects.requireNonNull(function); return (t, value1, value2) -> function.applyAsFloat(t); } /** * Creates a {@link ObjBiByteToFloatFunction} which uses the {@code second} parameter of this one as argument for * the given {@link ByteToFloatFunction}. * * @param <T> The type of the first argument to the function * @param function The function which accepts the {@code second} parameter of this one * @return Creates a {@code ObjBiByteToFloatFunction} which uses the {@code second} parameter of this one as * argument for the given {@code ByteToFloatFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T> ObjBiByteToFloatFunction<T> onlySecond(@Nonnull final ByteToFloatFunction function) { Objects.requireNonNull(function); return (t, value1, value2) -> function.applyAsFloat(value1); } /** * Creates a {@link ObjBiByteToFloatFunction} which uses the {@code third} parameter of this one as argument for the * given {@link ByteToFloatFunction}. * * @param <T> The type of the first argument to the function * @param function The function which accepts the {@code third} parameter of this one * @return Creates a {@code ObjBiByteToFloatFunction} which uses the {@code third} parameter of this one as argument * for the given {@code ByteToFloatFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T> ObjBiByteToFloatFunction<T> onlyThird(@Nonnull final ByteToFloatFunction function) { Objects.requireNonNull(function); return (t, value1, value2) -> function.applyAsFloat(value2); } /** * Creates a {@link ObjBiByteToFloatFunction} which always returns a given value. * * @param <T> The type of the first argument to the function * @param ret The return value for the constant * @return A {@code ObjBiByteToFloatFunction} which always returns a given value. */ @Nonnull static <T> ObjBiByteToFloatFunction<T> constant(float ret) { return (t, value1, value2) -> ret; } /** * Applies this function to the given arguments. * * @param t The first argument to the function * @param value1 The second argument to the function * @param value2 The third argument to the function * @return The return value from the function, which is its result. */ float applyAsFloat(T t, byte value1, byte value2); /** * Applies this function partially to some arguments of this one, producing a {@link BiByteToFloatFunction} as * result. * * @param t The first argument to this function used to partially apply this function * @return A {@code BiByteToFloatFunction} that represents this function partially applied the some arguments. */ @Nonnull default BiByteToFloatFunction papplyAsFloat(T t) { return (value1, value2) -> this.applyAsFloat(t, value1, value2); } /** * Applies this function partially to some arguments of this one, producing a {@link ByteToFloatFunction} as result. * * @param t The first argument to this function used to partially apply this function * @param value1 The second argument to this function used to partially apply this function * @return A {@code ByteToFloatFunction} that represents this function partially applied the some arguments. */ @Nonnull default ByteToFloatFunction papplyAsFloat(T t, byte value1) { return (value2) -> this.applyAsFloat(t, value1, value2); } /** * Applies this function partially to some arguments of this one, producing a {@link ObjByteToFloatFunction} as * result. * * @param value1 The second argument to this function used to partially apply this function * @return A {@code ObjByteToFloatFunction} that represents this function partially applied the some arguments. */ @Nonnull default ObjByteToFloatFunction<T> papplyAsFloat(byte value1) { return (t, value2) -> this.applyAsFloat(t, value1, value2); } /** * Applies this function partially to some arguments of this one, producing a {@link ToFloatFunction} as result. * * @param value1 The second argument to this function used to partially apply this function * @param value2 The third argument to this function used to partially apply this function * @return A {@code ToFloatFunction} that represents this function partially applied the some arguments. */ @Nonnull default ToFloatFunction<T> papplyAsFloat(byte value1, byte value2) { return (t) -> this.applyAsFloat(t, value1, value2); } /** * Returns the number of arguments for this function. * * @return The number of arguments for this function. * @implSpec The default implementation always returns {@code 3}. */ @Nonnegative default int arity() { return 3; } /** * Returns a composed {@link ToFloatTriFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param <C> The type of the argument to the third given function, and of composed function * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code ToFloatTriFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B, C> ToFloatTriFunction<A, B, C> compose(@Nonnull final Function<? super A, ? extends T> before1, @Nonnull final ToByteFunction<? super B> before2, @Nonnull final ToByteFunction<? super C> before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (a, b, c) -> applyAsFloat(before1.apply(a), before2.applyAsByte(b), before3.applyAsByte(c)); } /** * Returns a composed {@link TriBooleanToFloatFunction} that first applies the {@code before} functions to its * input, and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriBooleanToFloatFunction} that first applies the {@code before} functions to its * input, and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriBooleanToFloatFunction composeFromBoolean(@Nonnull final BooleanFunction<? extends T> before1, @Nonnull final BooleanToByteFunction before2, @Nonnull final BooleanToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriByteToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second operator to apply before this function is applied * @param before3 The third operator to apply before this function is applied * @return A composed {@code TriByteToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default TriByteToFloatFunction composeFromByte(@Nonnull final ByteFunction<? extends T> before1, @Nonnull final ByteUnaryOperator before2, @Nonnull final ByteUnaryOperator before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriCharToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriCharToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default TriCharToFloatFunction composeFromChar(@Nonnull final CharFunction<? extends T> before1, @Nonnull final CharToByteFunction before2, @Nonnull final CharToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriDoubleToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriDoubleToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default TriDoubleToFloatFunction composeFromDouble(@Nonnull final DoubleFunction<? extends T> before1, @Nonnull final DoubleToByteFunction before2, @Nonnull final DoubleToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link FloatTernaryOperator} that first applies the {@code before} functions to its input, and * then applies this function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to execute an * operation which accepts {@code float} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code FloatTernaryOperator} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default FloatTernaryOperator composeFromFloat(@Nonnull final FloatFunction<? extends T> before1, @Nonnull final FloatToByteFunction before2, @Nonnull final FloatToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriIntToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriIntToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default TriIntToFloatFunction composeFromInt(@Nonnull final IntFunction<? extends T> before1, @Nonnull final IntToByteFunction before2, @Nonnull final IntToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriLongToFloatFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriLongToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default TriLongToFloatFunction composeFromLong(@Nonnull final LongFunction<? extends T> before1, @Nonnull final LongToByteFunction before2, @Nonnull final LongToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link TriShortToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code short} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriShortToFloatFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default TriShortToFloatFunction composeFromShort(@Nonnull final ShortFunction<? extends T> before1, @Nonnull final ShortToByteFunction before2, @Nonnull final ShortToByteFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsFloat(before1.apply(value1), before2.applyAsByte(value2), before3.applyAsByte(value3)); } /** * Returns a composed {@link ObjBiByteFunction} that first applies this function to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this function is applied * @return A composed {@code ObjBiByteFunction} that first applies this function to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> ObjBiByteFunction<T, S> andThen(@Nonnull final FloatFunction<? extends S> after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.apply(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiBytePredicate} that first applies this function to its input, and then applies the * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code boolean}. * * @param after The predicate to apply after this function is applied * @return A composed {@code ObjBiBytePredicate} that first applies this function to its input, and then applies the * {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default ObjBiBytePredicate<T> andThenToBoolean(@Nonnull final FloatPredicate after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.test(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiByteToByteFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code byte}. * * @param after The function to apply after this function is applied * @return A composed {@code ObjBiByteToByteFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default ObjBiByteToByteFunction<T> andThenToByte(@Nonnull final FloatToByteFunction after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.applyAsByte(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiByteToCharFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code char}. * * @param after The function to apply after this function is applied * @return A composed {@code ObjBiByteToCharFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default ObjBiByteToCharFunction<T> andThenToChar(@Nonnull final FloatToCharFunction after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.applyAsChar(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiByteToDoubleFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code double}. * * @param after The function to apply after this function is applied * @return A composed {@code ObjBiByteToDoubleFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default ObjBiByteToDoubleFunction<T> andThenToDouble(@Nonnull final FloatToDoubleFunction after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.applyAsDouble(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiByteToFloatFunction} that first applies this function to its input, and then * applies the {@code after} operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code float}. * * @param after The operator to apply after this function is applied * @return A composed {@code ObjBiByteToFloatFunction} that first applies this function to its input, and then * applies the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default ObjBiByteToFloatFunction<T> andThenToFloat(@Nonnull final FloatUnaryOperator after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.applyAsFloat(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiByteToIntFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code int}. * * @param after The function to apply after this function is applied * @return A composed {@code ObjBiByteToIntFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default ObjBiByteToIntFunction<T> andThenToInt(@Nonnull final FloatToIntFunction after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.applyAsInt(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiByteToLongFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code long}. * * @param after The function to apply after this function is applied * @return A composed {@code ObjBiByteToLongFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default ObjBiByteToLongFunction<T> andThenToLong(@Nonnull final FloatToLongFunction after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.applyAsLong(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiByteToShortFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code short}. * * @param after The function to apply after this function is applied * @return A composed {@code ObjBiByteToShortFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default ObjBiByteToShortFunction<T> andThenToShort(@Nonnull final FloatToShortFunction after) { Objects.requireNonNull(after); return (t, value1, value2) -> after.applyAsShort(applyAsFloat(t, value1, value2)); } /** * Returns a composed {@link ObjBiByteConsumer} that fist applies this function to its input, and then consumes the * result using the given {@link FloatConsumer}. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code ObjBiByteConsumer} that first applies this function to its input, and then consumes the * result using the given {@code FloatConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default ObjBiByteConsumer<T> consume(@Nonnull final FloatConsumer consumer) { Objects.requireNonNull(consumer); return (t, value1, value2) -> consumer.accept(applyAsFloat(t, value1, value2)); } /** * Returns a memoized (caching) version of this {@link ObjBiByteToFloatFunction}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the function and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code ObjBiByteToFloatFunction}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized function, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized function can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default ObjBiByteToFloatFunction<T> memoized() { if (isMemoized()) { return this; } else { final Map<Triple<T, Byte, Byte>, Float> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (ObjBiByteToFloatFunction<T> & Memoized) (t, value1, value2) -> { final float returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Triple.of(t, value1, value2), key -> applyAsFloat(key.getLeft(), key.getMiddle(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link TriFunction} which represents this {@link ObjBiByteToFloatFunction}. Thereby the * primitive input argument for this function is autoboxed. This method provides the possibility to use this {@code * ObjBiByteToFloatFunction} with methods provided by the {@code JDK}. * * @return A composed {@code TriFunction} which represents this {@code ObjBiByteToFloatFunction}. */ @Nonnull default TriFunction<T, Byte, Byte, Float> boxed() { return this::applyAsFloat; } }