Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.function.tri.obj; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.tri.obj.BiObjIntConsumer; import at.gridtec.lambda4j.function.BooleanFunction; import at.gridtec.lambda4j.function.ByteFunction; import at.gridtec.lambda4j.function.CharFunction; import at.gridtec.lambda4j.function.FloatFunction; import at.gridtec.lambda4j.function.ShortFunction; import at.gridtec.lambda4j.function.bi.obj.ObjIntToIntFunction; import at.gridtec.lambda4j.function.bi.to.ToIntBiFunction2; import at.gridtec.lambda4j.function.conversion.BooleanToIntFunction; import at.gridtec.lambda4j.function.conversion.ByteToIntFunction; import at.gridtec.lambda4j.function.conversion.CharToIntFunction; import at.gridtec.lambda4j.function.conversion.FloatToIntFunction; import at.gridtec.lambda4j.function.conversion.IntToByteFunction; import at.gridtec.lambda4j.function.conversion.IntToCharFunction; import at.gridtec.lambda4j.function.conversion.IntToFloatFunction; import at.gridtec.lambda4j.function.conversion.IntToShortFunction; import at.gridtec.lambda4j.function.conversion.ShortToIntFunction; import at.gridtec.lambda4j.function.to.ToIntFunction2; import at.gridtec.lambda4j.function.tri.TriFunction; import at.gridtec.lambda4j.function.tri.conversion.TriBooleanToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriLongToIntFunction; import at.gridtec.lambda4j.function.tri.conversion.TriShortToIntFunction; import at.gridtec.lambda4j.function.tri.to.ToIntTriFunction; import at.gridtec.lambda4j.operator.ternary.IntTernaryOperator; import at.gridtec.lambda4j.operator.unary.IntUnaryOperator2; import at.gridtec.lambda4j.predicate.tri.obj.BiObjIntPredicate; import org.apache.commons.lang3.tuple.Pair; import org.apache.commons.lang3.tuple.Triple; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; import java.util.function.DoubleFunction; import java.util.function.DoubleToIntFunction; import java.util.function.Function; import java.util.function.IntConsumer; import java.util.function.IntFunction; import java.util.function.IntPredicate; import java.util.function.IntToDoubleFunction; import java.util.function.IntToLongFunction; import java.util.function.IntUnaryOperator; import java.util.function.LongFunction; import java.util.function.LongToIntFunction; import java.util.function.ToIntFunction; /** * Represents an operation that accepts two object-valued and one {@code int}-valued input argument and produces a * {@code int}-valued result. * This is a (reference, reference, int) specialization of {@link TriFunction}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsInt(Object, Object, int)}. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @see TriFunction */ @SuppressWarnings("unused") @FunctionalInterface public interface BiObjIntToIntFunction<T, U> extends Lambda { /** * Constructs a {@link BiObjIntToIntFunction} based on a lambda expression or a method reference. Thereby the given * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired * type. With this method, it is possible to ensure that correct type is used from lambda expression or method * reference. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code BiObjIntToIntFunction} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static <T, U> BiObjIntToIntFunction<T, U> of(@Nullable final BiObjIntToIntFunction<T, U> expression) { return expression; } /** * Calls the given {@link BiObjIntToIntFunction} with the given arguments and returns its result. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param function The function to be called * @param t The first argument to the function * @param u The second argument to the function * @param value The third argument to the function * @return The result from the given {@code BiObjIntToIntFunction}. * @throws NullPointerException If given argument is {@code null} */ static <T, U> int call(@Nonnull final BiObjIntToIntFunction<? super T, ? super U> function, T t, U u, int value) { Objects.requireNonNull(function); return function.applyAsInt(t, u, value); } /** * Creates a {@link BiObjIntToIntFunction} which uses the {@code first} parameter of this one as argument for the * given {@link ToIntFunction}. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param function The function which accepts the {@code first} parameter of this one * @return Creates a {@code BiObjIntToIntFunction} which uses the {@code first} parameter of this one as argument * for the given {@code ToIntFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T, U> BiObjIntToIntFunction<T, U> onlyFirst(@Nonnull final ToIntFunction<? super T> function) { Objects.requireNonNull(function); return (t, u, value) -> function.applyAsInt(t); } /** * Creates a {@link BiObjIntToIntFunction} which uses the {@code second} parameter of this one as argument for the * given {@link ToIntFunction}. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param function The function which accepts the {@code second} parameter of this one * @return Creates a {@code BiObjIntToIntFunction} which uses the {@code second} parameter of this one as argument * for the given {@code ToIntFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T, U> BiObjIntToIntFunction<T, U> onlySecond(@Nonnull final ToIntFunction<? super U> function) { Objects.requireNonNull(function); return (t, u, value) -> function.applyAsInt(u); } /** * Creates a {@link BiObjIntToIntFunction} which uses the {@code third} parameter of this one as argument for the * given {@link IntUnaryOperator}. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param operator The operator which accepts the {@code third} parameter of this one * @return Creates a {@code BiObjIntToIntFunction} which uses the {@code third} parameter of this one as argument * for the given {@code IntUnaryOperator}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T, U> BiObjIntToIntFunction<T, U> onlyThird(@Nonnull final IntUnaryOperator operator) { Objects.requireNonNull(operator); return (t, u, value) -> operator.applyAsInt(value); } /** * Creates a {@link BiObjIntToIntFunction} which always returns a given value. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param ret The return value for the constant * @return A {@code BiObjIntToIntFunction} which always returns a given value. */ @Nonnull static <T, U> BiObjIntToIntFunction<T, U> constant(int ret) { return (t, u, value) -> ret; } /** * Applies this function to the given arguments. * * @param t The first argument to the function * @param u The second argument to the function * @param value The third argument to the function * @return The return value from the function, which is its result. */ int applyAsInt(T t, U u, int value); /** * Applies this function to the given tuple. * * @param tuple The tuple to be applied to the function * @param value The primitive value to be applied to the function * @return The return value from the function, which is its result. * @throws NullPointerException If given argument is {@code null} * @see org.apache.commons.lang3.tuple.Pair */ default int applyAsInt(@Nonnull Pair<T, U> tuple, int value) { Objects.requireNonNull(tuple); return applyAsInt(tuple.getLeft(), tuple.getRight(), value); } /** * Applies this operator partially to some arguments of this one, producing a {@link ObjIntToIntFunction} as result. * * @param t The first argument to this function used to partially apply this function * @return A {@code ObjIntToIntFunction} that represents this operator partially applied the some arguments. */ @Nonnull default ObjIntToIntFunction<U> papplyAsInt(T t) { return (u, value) -> this.applyAsInt(t, u, value); } /** * Applies this operator partially to some arguments of this one, producing a {@link IntUnaryOperator2} as result. * * @param t The first argument to this function used to partially apply this function * @param u The second argument to this function used to partially apply this function * @return A {@code IntUnaryOperator2} that represents this operator partially applied the some arguments. */ @Nonnull default IntUnaryOperator2 papplyAsInt(T t, U u) { return (value) -> this.applyAsInt(t, u, value); } /** * Applies this operator partially to some arguments of this one, producing a {@link ToIntBiFunction2} as result. * * @param value The third argument to this function used to partially apply this function * @return A {@code ToIntBiFunction2} that represents this operator partially applied the some arguments. */ @Nonnull default ToIntBiFunction2<T, U> papplyAsInt(int value) { return (t, u) -> this.applyAsInt(t, u, value); } /** * Applies this operator partially to some arguments of this one, producing a {@link ToIntFunction2} as result. * * @param t The first argument to this function used to partially apply this function * @param value The third argument to this function used to partially apply this function * @return A {@code ToIntFunction2} that represents this operator partially applied the some arguments. */ @Nonnull default ToIntFunction2<U> papplyAsInt(T t, int value) { return (u) -> this.applyAsInt(t, u, value); } /** * Returns the number of arguments for this function. * * @return The number of arguments for this function. * @implSpec The default implementation always returns {@code 3}. */ @Nonnegative default int arity() { return 3; } /** * Returns a composed {@link ToIntTriFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param <C> The type of the argument to the third given function, and of composed function * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code ToIntTriFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B, C> ToIntTriFunction<A, B, C> compose(@Nonnull final Function<? super A, ? extends T> before1, @Nonnull final Function<? super B, ? extends U> before2, @Nonnull final ToIntFunction<? super C> before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (a, b, c) -> applyAsInt(before1.apply(a), before2.apply(b), before3.applyAsInt(c)); } /** * Returns a composed {@link TriBooleanToIntFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriBooleanToIntFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriBooleanToIntFunction composeFromBoolean(@Nonnull final BooleanFunction<? extends T> before1, @Nonnull final BooleanFunction<? extends U> before2, @Nonnull final BooleanToIntFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsInt(before1.apply(value1), before2.apply(value2), before3.applyAsInt(value3)); } /** * Returns a composed {@link TriByteToIntFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriByteToIntFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default TriByteToIntFunction composeFromByte(@Nonnull final ByteFunction<? extends T> before1, @Nonnull final ByteFunction<? extends U> before2, @Nonnull final ByteToIntFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsInt(before1.apply(value1), before2.apply(value2), before3.applyAsInt(value3)); } /** * Returns a composed {@link TriCharToIntFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriCharToIntFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default TriCharToIntFunction composeFromChar(@Nonnull final CharFunction<? extends T> before1, @Nonnull final CharFunction<? extends U> before2, @Nonnull final CharToIntFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsInt(before1.apply(value1), before2.apply(value2), before3.applyAsInt(value3)); } /** * Returns a composed {@link TriDoubleToIntFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriDoubleToIntFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default TriDoubleToIntFunction composeFromDouble(@Nonnull final DoubleFunction<? extends T> before1, @Nonnull final DoubleFunction<? extends U> before2, @Nonnull final DoubleToIntFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsInt(before1.apply(value1), before2.apply(value2), before3.applyAsInt(value3)); } /** * Returns a composed {@link TriFloatToIntFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code float} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriFloatToIntFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default TriFloatToIntFunction composeFromFloat(@Nonnull final FloatFunction<? extends T> before1, @Nonnull final FloatFunction<? extends U> before2, @Nonnull final FloatToIntFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsInt(before1.apply(value1), before2.apply(value2), before3.applyAsInt(value3)); } /** * Returns a composed {@link IntTernaryOperator} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third operator to apply before this function is applied * @return A composed {@code IntTernaryOperator} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default IntTernaryOperator composeFromInt(@Nonnull final IntFunction<? extends T> before1, @Nonnull final IntFunction<? extends U> before2, @Nonnull final IntUnaryOperator before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsInt(before1.apply(value1), before2.apply(value2), before3.applyAsInt(value3)); } /** * Returns a composed {@link TriLongToIntFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriLongToIntFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default TriLongToIntFunction composeFromLong(@Nonnull final LongFunction<? extends T> before1, @Nonnull final LongFunction<? extends U> before2, @Nonnull final LongToIntFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsInt(before1.apply(value1), before2.apply(value2), before3.applyAsInt(value3)); } /** * Returns a composed {@link TriShortToIntFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code short} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriShortToIntFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default TriShortToIntFunction composeFromShort(@Nonnull final ShortFunction<? extends T> before1, @Nonnull final ShortFunction<? extends U> before2, @Nonnull final ShortToIntFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsInt(before1.apply(value1), before2.apply(value2), before3.applyAsInt(value3)); } /** * Returns a composed {@link BiObjIntFunction} that first applies this function to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this function is applied * @return A composed {@code BiObjIntFunction} that first applies this function to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> BiObjIntFunction<T, U, S> andThen(@Nonnull final IntFunction<? extends S> after) { Objects.requireNonNull(after); return (t, u, value) -> after.apply(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntPredicate} that first applies this function to its input, and then applies the * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code boolean}. * * @param after The predicate to apply after this function is applied * @return A composed {@code BiObjIntPredicate} that first applies this function to its input, and then applies the * {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default BiObjIntPredicate<T, U> andThenToBoolean(@Nonnull final IntPredicate after) { Objects.requireNonNull(after); return (t, u, value) -> after.test(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntToByteFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code byte}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjIntToByteFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default BiObjIntToByteFunction<T, U> andThenToByte(@Nonnull final IntToByteFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsByte(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntToCharFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code char}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjIntToCharFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default BiObjIntToCharFunction<T, U> andThenToChar(@Nonnull final IntToCharFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsChar(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntToDoubleFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code double}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjIntToDoubleFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default BiObjIntToDoubleFunction<T, U> andThenToDouble(@Nonnull final IntToDoubleFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsDouble(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntToFloatFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code float}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjIntToFloatFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default BiObjIntToFloatFunction<T, U> andThenToFloat(@Nonnull final IntToFloatFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsFloat(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntToIntFunction} that first applies this function to its input, and then applies * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code int}. * * @param after The operator to apply after this function is applied * @return A composed {@code BiObjIntToIntFunction} that first applies this function to its input, and then applies * the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default BiObjIntToIntFunction<T, U> andThenToInt(@Nonnull final IntUnaryOperator after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsInt(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntToLongFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code long}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjIntToLongFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default BiObjIntToLongFunction<T, U> andThenToLong(@Nonnull final IntToLongFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsLong(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntToShortFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code short}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjIntToShortFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default BiObjIntToShortFunction<T, U> andThenToShort(@Nonnull final IntToShortFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsShort(applyAsInt(t, u, value)); } /** * Returns a composed {@link BiObjIntConsumer} that fist applies this function to its input, and then consumes the * result using the given {@link IntConsumer}. If evaluation of either operation throws an exception, it is relayed * to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code BiObjIntConsumer} that first applies this function to its input, and then consumes the * result using the given {@code IntConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default BiObjIntConsumer<T, U> consume(@Nonnull final IntConsumer consumer) { Objects.requireNonNull(consumer); return (t, u, value) -> consumer.accept(applyAsInt(t, u, value)); } /** * Returns a tupled version of this function. * * @return A tupled version of this function. */ @Nonnull default ObjIntToIntFunction<Pair<T, U>> tupled() { return this::applyAsInt; } /** * Returns a memoized (caching) version of this {@link BiObjIntToIntFunction}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the function and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code BiObjIntToIntFunction}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized function, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized function can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default BiObjIntToIntFunction<T, U> memoized() { if (isMemoized()) { return this; } else { final Map<Triple<T, U, Integer>, Integer> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (BiObjIntToIntFunction<T, U> & Memoized) (t, u, value) -> { final int returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Triple.of(t, u, value), key -> applyAsInt(key.getLeft(), key.getMiddle(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link TriFunction} which represents this {@link BiObjIntToIntFunction}. Thereby the primitive * input argument for this function is autoboxed. This method provides the possibility to use this * {@code BiObjIntToIntFunction} with methods provided by the {@code JDK}. * * @return A composed {@code TriFunction} which represents this {@code BiObjIntToIntFunction}. */ @Nonnull default TriFunction<T, U, Integer, Integer> boxed() { return this::applyAsInt; } }