Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.function.tri.obj; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.ShortConsumer; import at.gridtec.lambda4j.consumer.tri.obj.BiObjFloatConsumer; import at.gridtec.lambda4j.function.BooleanFunction; import at.gridtec.lambda4j.function.ByteFunction; import at.gridtec.lambda4j.function.CharFunction; import at.gridtec.lambda4j.function.FloatFunction; import at.gridtec.lambda4j.function.ShortFunction; import at.gridtec.lambda4j.function.bi.obj.ObjFloatToShortFunction; import at.gridtec.lambda4j.function.bi.to.ToShortBiFunction; import at.gridtec.lambda4j.function.conversion.BooleanToFloatFunction; import at.gridtec.lambda4j.function.conversion.ByteToFloatFunction; import at.gridtec.lambda4j.function.conversion.CharToFloatFunction; import at.gridtec.lambda4j.function.conversion.DoubleToFloatFunction; import at.gridtec.lambda4j.function.conversion.FloatToShortFunction; import at.gridtec.lambda4j.function.conversion.IntToFloatFunction; import at.gridtec.lambda4j.function.conversion.LongToFloatFunction; import at.gridtec.lambda4j.function.conversion.ShortToByteFunction; import at.gridtec.lambda4j.function.conversion.ShortToCharFunction; import at.gridtec.lambda4j.function.conversion.ShortToDoubleFunction; import at.gridtec.lambda4j.function.conversion.ShortToFloatFunction; import at.gridtec.lambda4j.function.conversion.ShortToIntFunction; import at.gridtec.lambda4j.function.conversion.ShortToLongFunction; import at.gridtec.lambda4j.function.to.ToFloatFunction; import at.gridtec.lambda4j.function.to.ToShortFunction; import at.gridtec.lambda4j.function.tri.TriFunction; import at.gridtec.lambda4j.function.tri.conversion.TriBooleanToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriByteToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriCharToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriFloatToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriIntToShortFunction; import at.gridtec.lambda4j.function.tri.conversion.TriLongToShortFunction; import at.gridtec.lambda4j.function.tri.to.ToShortTriFunction; import at.gridtec.lambda4j.operator.ternary.ShortTernaryOperator; import at.gridtec.lambda4j.operator.unary.FloatUnaryOperator; import at.gridtec.lambda4j.operator.unary.ShortUnaryOperator; import at.gridtec.lambda4j.predicate.ShortPredicate; import at.gridtec.lambda4j.predicate.tri.obj.BiObjFloatPredicate; import org.apache.commons.lang3.tuple.Pair; import org.apache.commons.lang3.tuple.Triple; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; import java.util.function.DoubleFunction; import java.util.function.Function; import java.util.function.IntFunction; import java.util.function.LongFunction; /** * Represents an operation that accepts two object-valued and one {@code float}-valued input argument and produces a * {@code short}-valued result. * This is a (reference, reference, float) specialization of {@link TriFunction}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsShort(Object, Object, float)}. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @see TriFunction */ @SuppressWarnings("unused") @FunctionalInterface public interface BiObjFloatToShortFunction<T, U> extends Lambda { /** * Constructs a {@link BiObjFloatToShortFunction} based on a lambda expression or a method reference. Thereby the * given lambda expression or method reference is returned on an as-is basis to implicitly transform it to the * desired type. With this method, it is possible to ensure that correct type is used from lambda expression or * method reference. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code BiObjFloatToShortFunction} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static <T, U> BiObjFloatToShortFunction<T, U> of(@Nullable final BiObjFloatToShortFunction<T, U> expression) { return expression; } /** * Calls the given {@link BiObjFloatToShortFunction} with the given arguments and returns its result. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param function The function to be called * @param t The first argument to the function * @param u The second argument to the function * @param value The third argument to the function * @return The result from the given {@code BiObjFloatToShortFunction}. * @throws NullPointerException If given argument is {@code null} */ static <T, U> short call(@Nonnull final BiObjFloatToShortFunction<? super T, ? super U> function, T t, U u, float value) { Objects.requireNonNull(function); return function.applyAsShort(t, u, value); } /** * Creates a {@link BiObjFloatToShortFunction} which uses the {@code first} parameter of this one as argument for * the given {@link ToShortFunction}. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param function The function which accepts the {@code first} parameter of this one * @return Creates a {@code BiObjFloatToShortFunction} which uses the {@code first} parameter of this one as * argument for the given {@code ToShortFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T, U> BiObjFloatToShortFunction<T, U> onlyFirst(@Nonnull final ToShortFunction<? super T> function) { Objects.requireNonNull(function); return (t, u, value) -> function.applyAsShort(t); } /** * Creates a {@link BiObjFloatToShortFunction} which uses the {@code second} parameter of this one as argument for * the given {@link ToShortFunction}. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param function The function which accepts the {@code second} parameter of this one * @return Creates a {@code BiObjFloatToShortFunction} which uses the {@code second} parameter of this one as * argument for the given {@code ToShortFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T, U> BiObjFloatToShortFunction<T, U> onlySecond(@Nonnull final ToShortFunction<? super U> function) { Objects.requireNonNull(function); return (t, u, value) -> function.applyAsShort(u); } /** * Creates a {@link BiObjFloatToShortFunction} which uses the {@code third} parameter of this one as argument for * the given {@link FloatToShortFunction}. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param function The function which accepts the {@code third} parameter of this one * @return Creates a {@code BiObjFloatToShortFunction} which uses the {@code third} parameter of this one as * argument for the given {@code FloatToShortFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static <T, U> BiObjFloatToShortFunction<T, U> onlyThird(@Nonnull final FloatToShortFunction function) { Objects.requireNonNull(function); return (t, u, value) -> function.applyAsShort(value); } /** * Creates a {@link BiObjFloatToShortFunction} which always returns a given value. * * @param <T> The type of the first argument to the function * @param <U> The type of the second argument to the function * @param ret The return value for the constant * @return A {@code BiObjFloatToShortFunction} which always returns a given value. */ @Nonnull static <T, U> BiObjFloatToShortFunction<T, U> constant(short ret) { return (t, u, value) -> ret; } /** * Applies this function to the given arguments. * * @param t The first argument to the function * @param u The second argument to the function * @param value The third argument to the function * @return The return value from the function, which is its result. */ short applyAsShort(T t, U u, float value); /** * Applies this function to the given tuple. * * @param tuple The tuple to be applied to the function * @param value The primitive value to be applied to the function * @return The return value from the function, which is its result. * @throws NullPointerException If given argument is {@code null} * @see org.apache.commons.lang3.tuple.Pair */ default short applyAsShort(@Nonnull Pair<T, U> tuple, float value) { Objects.requireNonNull(tuple); return applyAsShort(tuple.getLeft(), tuple.getRight(), value); } /** * Applies this function partially to some arguments of this one, producing a {@link ObjFloatToShortFunction} as * result. * * @param t The first argument to this function used to partially apply this function * @return A {@code ObjFloatToShortFunction} that represents this function partially applied the some arguments. */ @Nonnull default ObjFloatToShortFunction<U> papplyAsShort(T t) { return (u, value) -> this.applyAsShort(t, u, value); } /** * Applies this function partially to some arguments of this one, producing a {@link FloatToShortFunction} as * result. * * @param t The first argument to this function used to partially apply this function * @param u The second argument to this function used to partially apply this function * @return A {@code FloatToShortFunction} that represents this function partially applied the some arguments. */ @Nonnull default FloatToShortFunction papplyAsShort(T t, U u) { return (value) -> this.applyAsShort(t, u, value); } /** * Applies this function partially to some arguments of this one, producing a {@link ToShortBiFunction} as result. * * @param value The third argument to this function used to partially apply this function * @return A {@code ToShortBiFunction} that represents this function partially applied the some arguments. */ @Nonnull default ToShortBiFunction<T, U> papplyAsShort(float value) { return (t, u) -> this.applyAsShort(t, u, value); } /** * Applies this function partially to some arguments of this one, producing a {@link ToShortFunction} as result. * * @param t The first argument to this function used to partially apply this function * @param value The third argument to this function used to partially apply this function * @return A {@code ToShortFunction} that represents this function partially applied the some arguments. */ @Nonnull default ToShortFunction<U> papplyAsShort(T t, float value) { return (u) -> this.applyAsShort(t, u, value); } /** * Returns the number of arguments for this function. * * @return The number of arguments for this function. * @implSpec The default implementation always returns {@code 3}. */ @Nonnegative default int arity() { return 3; } /** * Returns a composed {@link ToShortTriFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param <C> The type of the argument to the third given function, and of composed function * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code ToShortTriFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B, C> ToShortTriFunction<A, B, C> compose(@Nonnull final Function<? super A, ? extends T> before1, @Nonnull final Function<? super B, ? extends U> before2, @Nonnull final ToFloatFunction<? super C> before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (a, b, c) -> applyAsShort(before1.apply(a), before2.apply(b), before3.applyAsFloat(c)); } /** * Returns a composed {@link TriBooleanToShortFunction} that first applies the {@code before} functions to its * input, and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriBooleanToShortFunction} that first applies the {@code before} functions to its * input, and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default TriBooleanToShortFunction composeFromBoolean(@Nonnull final BooleanFunction<? extends T> before1, @Nonnull final BooleanFunction<? extends U> before2, @Nonnull final BooleanToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsShort(before1.apply(value1), before2.apply(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriByteToShortFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriByteToShortFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default TriByteToShortFunction composeFromByte(@Nonnull final ByteFunction<? extends T> before1, @Nonnull final ByteFunction<? extends U> before2, @Nonnull final ByteToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsShort(before1.apply(value1), before2.apply(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriCharToShortFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriCharToShortFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default TriCharToShortFunction composeFromChar(@Nonnull final CharFunction<? extends T> before1, @Nonnull final CharFunction<? extends U> before2, @Nonnull final CharToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsShort(before1.apply(value1), before2.apply(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriDoubleToShortFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriDoubleToShortFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default TriDoubleToShortFunction composeFromDouble(@Nonnull final DoubleFunction<? extends T> before1, @Nonnull final DoubleFunction<? extends U> before2, @Nonnull final DoubleToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsShort(before1.apply(value1), before2.apply(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriFloatToShortFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code float} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third operator to apply before this function is applied * @return A composed {@code TriFloatToShortFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default TriFloatToShortFunction composeFromFloat(@Nonnull final FloatFunction<? extends T> before1, @Nonnull final FloatFunction<? extends U> before2, @Nonnull final FloatUnaryOperator before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsShort(before1.apply(value1), before2.apply(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriIntToShortFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriIntToShortFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default TriIntToShortFunction composeFromInt(@Nonnull final IntFunction<? extends T> before1, @Nonnull final IntFunction<? extends U> before2, @Nonnull final IntToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsShort(before1.apply(value1), before2.apply(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link TriLongToShortFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code TriLongToShortFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default TriLongToShortFunction composeFromLong(@Nonnull final LongFunction<? extends T> before1, @Nonnull final LongFunction<? extends U> before2, @Nonnull final LongToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsShort(before1.apply(value1), before2.apply(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link ShortTernaryOperator} that first applies the {@code before} functions to its input, and * then applies this function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to execute an * operation which accepts {@code short} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @param before3 The third function to apply before this function is applied * @return A composed {@code ShortTernaryOperator} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default ShortTernaryOperator composeFromShort(@Nonnull final ShortFunction<? extends T> before1, @Nonnull final ShortFunction<? extends U> before2, @Nonnull final ShortToFloatFunction before3) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); Objects.requireNonNull(before3); return (value1, value2, value3) -> applyAsShort(before1.apply(value1), before2.apply(value2), before3.applyAsFloat(value3)); } /** * Returns a composed {@link BiObjFloatFunction} that first applies this function to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this function is applied * @return A composed {@code BiObjFloatFunction} that first applies this function to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> BiObjFloatFunction<T, U, S> andThen(@Nonnull final ShortFunction<? extends S> after) { Objects.requireNonNull(after); return (t, u, value) -> after.apply(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatPredicate} that first applies this function to its input, and then applies * the {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed * to the caller of the composed operation. This method is just convenience, to provide the ability to transform * this primitive function to an operation returning {@code boolean}. * * @param after The predicate to apply after this function is applied * @return A composed {@code BiObjFloatPredicate} that first applies this function to its input, and then applies * the {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default BiObjFloatPredicate<T, U> andThenToBoolean(@Nonnull final ShortPredicate after) { Objects.requireNonNull(after); return (t, u, value) -> after.test(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatToByteFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code byte}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjFloatToByteFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default BiObjFloatToByteFunction<T, U> andThenToByte(@Nonnull final ShortToByteFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsByte(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatToCharFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code char}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjFloatToCharFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default BiObjFloatToCharFunction<T, U> andThenToChar(@Nonnull final ShortToCharFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsChar(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatToDoubleFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code double}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjFloatToDoubleFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default BiObjFloatToDoubleFunction<T, U> andThenToDouble(@Nonnull final ShortToDoubleFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsDouble(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatToFloatFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code float}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjFloatToFloatFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default BiObjFloatToFloatFunction<T, U> andThenToFloat(@Nonnull final ShortToFloatFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsFloat(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatToIntFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code int}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjFloatToIntFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default BiObjFloatToIntFunction<T, U> andThenToInt(@Nonnull final ShortToIntFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsInt(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatToLongFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code long}. * * @param after The function to apply after this function is applied * @return A composed {@code BiObjFloatToLongFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default BiObjFloatToLongFunction<T, U> andThenToLong(@Nonnull final ShortToLongFunction after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsLong(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatToShortFunction} that first applies this function to its input, and then * applies the {@code after} operator to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code short}. * * @param after The operator to apply after this function is applied * @return A composed {@code BiObjFloatToShortFunction} that first applies this function to its input, and then * applies the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default BiObjFloatToShortFunction<T, U> andThenToShort(@Nonnull final ShortUnaryOperator after) { Objects.requireNonNull(after); return (t, u, value) -> after.applyAsShort(applyAsShort(t, u, value)); } /** * Returns a composed {@link BiObjFloatConsumer} that fist applies this function to its input, and then consumes the * result using the given {@link ShortConsumer}. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code BiObjFloatConsumer} that first applies this function to its input, and then consumes * the result using the given {@code ShortConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default BiObjFloatConsumer<T, U> consume(@Nonnull final ShortConsumer consumer) { Objects.requireNonNull(consumer); return (t, u, value) -> consumer.accept(applyAsShort(t, u, value)); } /** * Returns a tupled version of this function. * * @return A tupled version of this function. */ @Nonnull default ObjFloatToShortFunction<Pair<T, U>> tupled() { return this::applyAsShort; } /** * Returns a memoized (caching) version of this {@link BiObjFloatToShortFunction}. Whenever it is called, the * mapping between the input parameters and the return value is preserved in a cache, making subsequent calls * returning the memoized value instead of computing the return value again. * <p> * Unless the function and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code BiObjFloatToShortFunction}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized function, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized function can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default BiObjFloatToShortFunction<T, U> memoized() { if (isMemoized()) { return this; } else { final Map<Triple<T, U, Float>, Short> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (BiObjFloatToShortFunction<T, U> & Memoized) (t, u, value) -> { final short returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Triple.of(t, u, value), key -> applyAsShort(key.getLeft(), key.getMiddle(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link TriFunction} which represents this {@link BiObjFloatToShortFunction}. Thereby the * primitive input argument for this function is autoboxed. This method provides the possibility to use this {@code * BiObjFloatToShortFunction} with methods provided by the {@code JDK}. * * @return A composed {@code TriFunction} which represents this {@code BiObjFloatToShortFunction}. */ @Nonnull default TriFunction<T, U, Float, Short> boxed() { return this::applyAsShort; } }