Java tutorial
/* * Copyright (c) 2016 Gridtec. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package at.gridtec.lambda4j.function.bi.conversion; import at.gridtec.lambda4j.Lambda; import at.gridtec.lambda4j.consumer.ByteConsumer; import at.gridtec.lambda4j.consumer.bi.BiFloatConsumer; import at.gridtec.lambda4j.function.ByteFunction; import at.gridtec.lambda4j.function.bi.BiFloatFunction; import at.gridtec.lambda4j.function.bi.BiFunction2; import at.gridtec.lambda4j.function.bi.to.ToByteBiFunction; import at.gridtec.lambda4j.function.conversion.BooleanToFloatFunction; import at.gridtec.lambda4j.function.conversion.ByteToCharFunction; import at.gridtec.lambda4j.function.conversion.ByteToDoubleFunction; import at.gridtec.lambda4j.function.conversion.ByteToFloatFunction; import at.gridtec.lambda4j.function.conversion.ByteToIntFunction; import at.gridtec.lambda4j.function.conversion.ByteToLongFunction; import at.gridtec.lambda4j.function.conversion.ByteToShortFunction; import at.gridtec.lambda4j.function.conversion.CharToFloatFunction; import at.gridtec.lambda4j.function.conversion.DoubleToFloatFunction; import at.gridtec.lambda4j.function.conversion.FloatToByteFunction; import at.gridtec.lambda4j.function.conversion.IntToFloatFunction; import at.gridtec.lambda4j.function.conversion.LongToFloatFunction; import at.gridtec.lambda4j.function.conversion.ShortToFloatFunction; import at.gridtec.lambda4j.function.to.ToFloatFunction; import at.gridtec.lambda4j.operator.binary.ByteBinaryOperator; import at.gridtec.lambda4j.operator.binary.FloatBinaryOperator; import at.gridtec.lambda4j.operator.unary.ByteUnaryOperator; import at.gridtec.lambda4j.operator.unary.FloatUnaryOperator; import at.gridtec.lambda4j.predicate.BytePredicate; import at.gridtec.lambda4j.predicate.bi.BiFloatPredicate; import org.apache.commons.lang3.tuple.Pair; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Map; import java.util.Objects; import java.util.concurrent.ConcurrentHashMap; /** * Represents an operation that accepts two {@code float}-valued input arguments and produces a * {@code byte}-valued result. * This is a primitive specialization of {@link BiFunction2}. * <p> * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsByte(float, float)}. * * @see BiFunction2 */ @SuppressWarnings("unused") @FunctionalInterface public interface BiFloatToByteFunction extends Lambda { /** * Constructs a {@link BiFloatToByteFunction} based on a lambda expression or a method reference. Thereby the given * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired * type. With this method, it is possible to ensure that correct type is used from lambda expression or method * reference. * * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method} * @return A {@code BiFloatToByteFunction} from given lambda expression or method reference. * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given, * {@code null} will be returned. * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda * Expression</a> * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a> */ static BiFloatToByteFunction of(@Nullable final BiFloatToByteFunction expression) { return expression; } /** * Calls the given {@link BiFloatToByteFunction} with the given arguments and returns its result. * * @param function The function to be called * @param value1 The first argument to the function * @param value2 The second argument to the function * @return The result from the given {@code BiFloatToByteFunction}. * @throws NullPointerException If given argument is {@code null} */ static byte call(@Nonnull final BiFloatToByteFunction function, float value1, float value2) { Objects.requireNonNull(function); return function.applyAsByte(value1, value2); } /** * Creates a {@link BiFloatToByteFunction} which uses the {@code first} parameter of this one as argument for the * given {@link FloatToByteFunction}. * * @param function The function which accepts the {@code first} parameter of this one * @return Creates a {@code BiFloatToByteFunction} which uses the {@code first} parameter of this one as argument * for the given {@code FloatToByteFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static BiFloatToByteFunction onlyFirst(@Nonnull final FloatToByteFunction function) { Objects.requireNonNull(function); return (value1, value2) -> function.applyAsByte(value1); } /** * Creates a {@link BiFloatToByteFunction} which uses the {@code second} parameter of this one as argument for the * given {@link FloatToByteFunction}. * * @param function The function which accepts the {@code second} parameter of this one * @return Creates a {@code BiFloatToByteFunction} which uses the {@code second} parameter of this one as argument * for the given {@code FloatToByteFunction}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull static BiFloatToByteFunction onlySecond(@Nonnull final FloatToByteFunction function) { Objects.requireNonNull(function); return (value1, value2) -> function.applyAsByte(value2); } /** * Creates a {@link BiFloatToByteFunction} which always returns a given value. * * @param ret The return value for the constant * @return A {@code BiFloatToByteFunction} which always returns a given value. */ @Nonnull static BiFloatToByteFunction constant(byte ret) { return (value1, value2) -> ret; } /** * Applies this function to the given arguments. * * @param value1 The first argument to the function * @param value2 The second argument to the function * @return The return value from the function, which is its result. */ byte applyAsByte(float value1, float value2); /** * Applies this function partially to some arguments of this one, producing a {@link FloatToByteFunction} as result. * * @param value1 The first argument to this function used to partially apply this function * @return A {@code FloatToByteFunction} that represents this function partially applied the some arguments. */ @Nonnull default FloatToByteFunction papplyAsByte(float value1) { return (value2) -> this.applyAsByte(value1, value2); } /** * Returns the number of arguments for this function. * * @return The number of arguments for this function. * @implSpec The default implementation always returns {@code 2}. */ @Nonnegative default int arity() { return 2; } /** * Returns a composed {@link ToByteBiFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <A> The type of the argument to the first given function, and of composed function * @param <B> The type of the argument to the second given function, and of composed function * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code ToByteBiFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to handle every type. */ @Nonnull default <A, B> ToByteBiFunction<A, B> compose(@Nonnull final ToFloatFunction<? super A> before1, @Nonnull final ToFloatFunction<? super B> before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (a, b) -> applyAsByte(before1.applyAsFloat(a), before2.applyAsFloat(b)); } /** * Returns a composed {@link BiBooleanToByteFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code boolean} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code BiBooleanToByteFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * boolean}. */ @Nonnull default BiBooleanToByteFunction composeFromBoolean(@Nonnull final BooleanToFloatFunction before1, @Nonnull final BooleanToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsByte(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link ByteBinaryOperator} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code ByteBinaryOperator} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * byte}. */ @Nonnull default ByteBinaryOperator composeFromByte(@Nonnull final ByteToFloatFunction before1, @Nonnull final ByteToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsByte(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiCharToByteFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code BiCharToByteFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * char}. */ @Nonnull default BiCharToByteFunction composeFromChar(@Nonnull final CharToFloatFunction before1, @Nonnull final CharToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsByte(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiDoubleToByteFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code double} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code BiDoubleToByteFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * double}. */ @Nonnull default BiDoubleToByteFunction composeFromDouble(@Nonnull final DoubleToFloatFunction before1, @Nonnull final DoubleToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsByte(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiFloatToByteFunction} that first applies the {@code before} operators to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code float} input, before this primitive function is executed. * * @param before1 The first operator to apply before this function is applied * @param before2 The second operator to apply before this function is applied * @return A composed {@code BiFloatToByteFunction} that first applies the {@code before} operators to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * float}. */ @Nonnull default BiFloatToByteFunction composeFromFloat(@Nonnull final FloatUnaryOperator before1, @Nonnull final FloatUnaryOperator before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsByte(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiIntToByteFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code BiIntToByteFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * int}. */ @Nonnull default BiIntToByteFunction composeFromInt(@Nonnull final IntToFloatFunction before1, @Nonnull final IntToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsByte(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiLongToByteFunction} that first applies the {@code before} functions to * its input, and then applies this function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input, * before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code BiLongToByteFunction} that first applies the {@code before} functions to its input, and * then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * long}. */ @Nonnull default BiLongToByteFunction composeFromLong(@Nonnull final LongToFloatFunction before1, @Nonnull final LongToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsByte(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiShortToByteFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * execute an operation which accepts {@code short} input, before this primitive function is executed. * * @param before1 The first function to apply before this function is applied * @param before2 The second function to apply before this function is applied * @return A composed {@code BiShortToByteFunction} that first applies the {@code before} functions to its input, * and then applies this function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code * short}. */ @Nonnull default BiShortToByteFunction composeFromShort(@Nonnull final ShortToFloatFunction before1, @Nonnull final ShortToFloatFunction before2) { Objects.requireNonNull(before1); Objects.requireNonNull(before2); return (value1, value2) -> applyAsByte(before1.applyAsFloat(value1), before2.applyAsFloat(value2)); } /** * Returns a composed {@link BiFloatFunction} that first applies this function to its input, and then applies the * {@code after} function to the result. * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation. * * @param <S> The type of return value from the {@code after} function, and of the composed function * @param after The function to apply after this function is applied * @return A composed {@code BiFloatFunction} that first applies this function to its input, and then applies the * {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is able to return every type. */ @Nonnull default <S> BiFloatFunction<S> andThen(@Nonnull final ByteFunction<? extends S> after) { Objects.requireNonNull(after); return (value1, value2) -> after.apply(applyAsByte(value1, value2)); } /** * Returns a composed {@link BiFloatPredicate} that first applies this function to its input, and then applies the * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code boolean}. * * @param after The predicate to apply after this function is applied * @return A composed {@code BiFloatPredicate} that first applies this function to its input, and then applies the * {@code after} predicate to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * boolean}. */ @Nonnull default BiFloatPredicate andThenToBoolean(@Nonnull final BytePredicate after) { Objects.requireNonNull(after); return (value1, value2) -> after.test(applyAsByte(value1, value2)); } /** * Returns a composed {@link BiFloatToByteFunction} that first applies this function to its input, and then applies * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code byte}. * * @param after The operator to apply after this function is applied * @return A composed {@code BiFloatToByteFunction} that first applies this function to its input, and then applies * the {@code after} operator to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * byte}. */ @Nonnull default BiFloatToByteFunction andThenToByte(@Nonnull final ByteUnaryOperator after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsByte(applyAsByte(value1, value2)); } /** * Returns a composed {@link BiFloatToCharFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code char}. * * @param after The function to apply after this function is applied * @return A composed {@code BiFloatToCharFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * char}. */ @Nonnull default BiFloatToCharFunction andThenToChar(@Nonnull final ByteToCharFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsChar(applyAsByte(value1, value2)); } /** * Returns a composed {@link BiFloatToDoubleFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to * transform this primitive function to an operation returning {@code double}. * * @param after The function to apply after this function is applied * @return A composed {@code BiFloatToDoubleFunction} that first applies this function to its input, and then * applies the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * double}. */ @Nonnull default BiFloatToDoubleFunction andThenToDouble(@Nonnull final ByteToDoubleFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsDouble(applyAsByte(value1, value2)); } /** * Returns a composed {@link FloatBinaryOperator} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code float}. * * @param after The function to apply after this function is applied * @return A composed {@code FloatBinaryOperator} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * float}. */ @Nonnull default FloatBinaryOperator andThenToFloat(@Nonnull final ByteToFloatFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsFloat(applyAsByte(value1, value2)); } /** * Returns a composed {@link BiFloatToIntFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code int}. * * @param after The function to apply after this function is applied * @return A composed {@code BiFloatToIntFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * int}. */ @Nonnull default BiFloatToIntFunction andThenToInt(@Nonnull final ByteToIntFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsInt(applyAsByte(value1, value2)); } /** * Returns a composed {@link BiFloatToLongFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code long}. * * @param after The function to apply after this function is applied * @return A composed {@code BiFloatToLongFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * long}. */ @Nonnull default BiFloatToLongFunction andThenToLong(@Nonnull final ByteToLongFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsLong(applyAsByte(value1, value2)); } /** * Returns a composed {@link BiFloatToShortFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to * the caller of the composed operation. This method is just convenience, to provide the ability to transform this * primitive function to an operation returning {@code short}. * * @param after The function to apply after this function is applied * @return A composed {@code BiFloatToShortFunction} that first applies this function to its input, and then applies * the {@code after} function to the result. * @throws NullPointerException If given argument is {@code null} * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code * short}. */ @Nonnull default BiFloatToShortFunction andThenToShort(@Nonnull final ByteToShortFunction after) { Objects.requireNonNull(after); return (value1, value2) -> after.applyAsShort(applyAsByte(value1, value2)); } /** * Returns a composed {@link BiFloatConsumer} that fist applies this function to its input, and then consumes the * result using the given {@link ByteConsumer}. If evaluation of either operation throws an exception, it is relayed * to the caller of the composed operation. * * @param consumer The operation which consumes the result from this operation * @return A composed {@code BiFloatConsumer} that first applies this function to its input, and then consumes the * result using the given {@code ByteConsumer}. * @throws NullPointerException If given argument is {@code null} */ @Nonnull default BiFloatConsumer consume(@Nonnull final ByteConsumer consumer) { Objects.requireNonNull(consumer); return (value1, value2) -> consumer.accept(applyAsByte(value1, value2)); } /** * Returns a memoized (caching) version of this {@link BiFloatToByteFunction}. Whenever it is called, the mapping * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the * memoized value instead of computing the return value again. * <p> * Unless the function and therefore the used cache will be garbage-collected, it will keep all memoized values * forever. * * @return A memoized (caching) version of this {@code BiFloatToByteFunction}. * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the * resulting memoized function, as the cache used internally does not permit {@code null} keys or values. * @implNote The returned memoized function can be safely used concurrently from multiple threads which makes it * thread-safe. */ @Nonnull default BiFloatToByteFunction memoized() { if (isMemoized()) { return this; } else { final Map<Pair<Float, Float>, Byte> cache = new ConcurrentHashMap<>(); final Object lock = new Object(); return (BiFloatToByteFunction & Memoized) (value1, value2) -> { final byte returnValue; synchronized (lock) { returnValue = cache.computeIfAbsent(Pair.of(value1, value2), key -> applyAsByte(key.getLeft(), key.getRight())); } return returnValue; }; } } /** * Returns a composed {@link BiFunction2} which represents this {@link BiFloatToByteFunction}. Thereby the primitive * input argument for this function is autoboxed. This method provides the possibility to use this * {@code BiFloatToByteFunction} with methods provided by the {@code JDK}. * * @return A composed {@code BiFunction2} which represents this {@code BiFloatToByteFunction}. */ @Nonnull default BiFunction2<Float, Float, Byte> boxed() { return this::applyAsByte; } }