Java tutorial
package Armadillo.Analytics.Base; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.math.BigDecimal; import org.apache.commons.math3.exception.MathArithmeticException; import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.apache.commons.math3.exception.util.LocalizedFormats; /** * Utilities for comparing numbers. * * @since 3.0 * @version $Id: Precision.java 1422313 2012-12-15 18:53:41Z psteitz $ */ public class Precision { /** * <p> * Largest double-precision floating-point number such that * {@code 1 + EPSILON} is numerically equal to 1. This value is an upper * bound on the relative error due to rounding real numbers to double * precision floating-point numbers. * </p> * <p> * In IEEE 754 arithmetic, this is 2<sup>-53</sup>. * </p> * * @see <a href="http://en.wikipedia.org/wiki/Machine_epsilon">Machine epsilon</a> */ public static final double EPSILON; /** * Safe minimum, such that {@code 1 / SAFE_MIN} does not overflow. * <br/> * In IEEE 754 arithmetic, this is also the smallest normalized * number 2<sup>-1022</sup>. */ public static final double SAFE_MIN; /** Exponent offset in IEEE754 representation. */ private static final long EXPONENT_OFFSET = 1023l; /** Offset to order signed double numbers lexicographically. */ private static final long SGN_MASK = 0x8000000000000000L; /** Offset to order signed double numbers lexicographically. */ private static final int SGN_MASK_FLOAT = 0x80000000; static { /* * This was previously expressed as = 0x1.0p-53; * However, OpenJDK (Sparc Solaris) cannot handle such small * constants: MATH-721 */ EPSILON = Double.longBitsToDouble((EXPONENT_OFFSET - 53l) << 52); /* * This was previously expressed as = 0x1.0p-1022; * However, OpenJDK (Sparc Solaris) cannot handle such small * constants: MATH-721 */ SAFE_MIN = Double.longBitsToDouble((EXPONENT_OFFSET - 1022l) << 52); } /** * Private constructor. */ private Precision() { } /** * Compares two numbers given some amount of allowed error. * * @param x the first number * @param y the second number * @param eps the amount of error to allow when checking for equality * @return <ul><li>0 if {@link #equals(double, double, double) equals(x, y, eps)}</li> * <li>< 0 if !{@link #equals(double, double, double) equals(x, y, eps)} && x < y</li> * <li>> 0 if !{@link #equals(double, double, double) equals(x, y, eps)} && x > y</li></ul> */ public static int compareTo(double x, double y, double eps) { if (equals(x, y, eps)) { return 0; } else if (x < y) { return -1; } return 1; } /** * Compares two numbers given some amount of allowed error. * Two float numbers are considered equal if there are {@code (maxUlps - 1)} * (or fewer) floating point numbers between them, i.e. two adjacent floating * point numbers are considered equal. * Adapted from <a * href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm"> * Bruce Dawson</a> * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point * values between {@code x} and {@code y}. * @return <ul><li>0 if {@link #equals(double, double, int) equals(x, y, maxUlps)}</li> * <li>< 0 if !{@link #equals(double, double, int) equals(x, y, maxUlps)} && x < y</li> * <li>> 0 if !{@link #equals(double, double, int) equals(x, y, maxUlps)} && x > y</li></ul> */ public static int compareTo(final double x, final double y, final int maxUlps) { if (equals(x, y, maxUlps)) { return 0; } else if (x < y) { return -1; } return 1; } /** * Returns true iff they are equal as defined by * {@link #equals(float,float,int) equals(x, y, 1)}. * * @param x first value * @param y second value * @return {@code true} if the values are equal. */ public static boolean equals(float x, float y) { return equals(x, y, 1); } /** * Returns true if both arguments are NaN or neither is NaN and they are * equal as defined by {@link #equals(float,float) equals(x, y, 1)}. * * @param x first value * @param y second value * @return {@code true} if the values are equal or both are NaN. * @since 2.2 */ public static boolean equalsIncludingNaN(float x, float y) { return (Float.isNaN(x) && Float.isNaN(y)) || equals(x, y, 1); } /** * Returns true if both arguments are equal or within the range of allowed * error (inclusive). * * @param x first value * @param y second value * @param eps the amount of absolute error to allow. * @return {@code true} if the values are equal or within range of each other. * @since 2.2 */ public static boolean equals(float x, float y, float eps) { return equals(x, y, 1) || FastMath.abs(y - x) <= eps; } /** * Returns true if both arguments are NaN or are equal or within the range * of allowed error (inclusive). * * @param x first value * @param y second value * @param eps the amount of absolute error to allow. * @return {@code true} if the values are equal or within range of each other, * or both are NaN. * @since 2.2 */ public static boolean equalsIncludingNaN(float x, float y, float eps) { return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps); } /** * Returns true if both arguments are equal or within the range of allowed * error (inclusive). * Two float numbers are considered equal if there are {@code (maxUlps - 1)} * (or fewer) floating point numbers between them, i.e. two adjacent floating * point numbers are considered equal. * Adapted from <a * href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm"> * Bruce Dawson</a> * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point * values between {@code x} and {@code y}. * @return {@code true} if there are fewer than {@code maxUlps} floating * point values between {@code x} and {@code y}. * @since 2.2 */ public static boolean equals(float x, float y, int maxUlps) { int xInt = Float.floatToIntBits(x); int yInt = Float.floatToIntBits(y); // Make lexicographically ordered as a two's-complement integer. if (xInt < 0) { xInt = SGN_MASK_FLOAT - xInt; } if (yInt < 0) { yInt = SGN_MASK_FLOAT - yInt; } final boolean isEqual = FastMath.abs(xInt - yInt) <= maxUlps; return isEqual && !Float.isNaN(x) && !Float.isNaN(y); } /** * Returns true if both arguments are NaN or if they are equal as defined * by {@link #equals(float,float,int) equals(x, y, maxUlps)}. * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point * values between {@code x} and {@code y}. * @return {@code true} if both arguments are NaN or if there are less than * {@code maxUlps} floating point values between {@code x} and {@code y}. * @since 2.2 */ public static boolean equalsIncludingNaN(float x, float y, int maxUlps) { return (Float.isNaN(x) && Float.isNaN(y)) || equals(x, y, maxUlps); } /** * Returns true iff they are equal as defined by * {@link #equals(double,double,int) equals(x, y, 1)}. * * @param x first value * @param y second value * @return {@code true} if the values are equal. */ public static boolean equals(double x, double y) { return equals(x, y, 1); } /** * Returns true if both arguments are NaN or neither is NaN and they are * equal as defined by {@link #equals(double,double) equals(x, y, 1)}. * * @param x first value * @param y second value * @return {@code true} if the values are equal or both are NaN. * @since 2.2 */ public static boolean equalsIncludingNaN(double x, double y) { return (Double.isNaN(x) && Double.isNaN(y)) || equals(x, y, 1); } /** * Returns {@code true} if there is no double value strictly between the * arguments or the difference between them is within the range of allowed * error (inclusive). * * @param x First value. * @param y Second value. * @param eps Amount of allowed absolute error. * @return {@code true} if the values are two adjacent floating point * numbers or they are within range of each other. */ public static boolean equals(double x, double y, double eps) { return equals(x, y, 1) || FastMath.abs(y - x) <= eps; } /** * Returns {@code true} if there is no double value strictly between the * arguments or the reltaive difference between them is smaller or equal * to the given tolerance. * * @param x First value. * @param y Second value. * @param eps Amount of allowed relative error. * @return {@code true} if the values are two adjacent floating point * numbers or they are within range of each other. * @since 3.1 */ public static boolean equalsWithRelativeTolerance(double x, double y, double eps) { if (equals(x, y, 1)) { return true; } final double absoluteMax = FastMath.max(FastMath.abs(x), FastMath.abs(y)); final double relativeDifference = FastMath.abs((x - y) / absoluteMax); return relativeDifference <= eps; } /** * Returns true if both arguments are NaN or are equal or within the range * of allowed error (inclusive). * * @param x first value * @param y second value * @param eps the amount of absolute error to allow. * @return {@code true} if the values are equal or within range of each other, * or both are NaN. * @since 2.2 */ public static boolean equalsIncludingNaN(double x, double y, double eps) { return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps); } /** * Returns true if both arguments are equal or within the range of allowed * error (inclusive). * Two float numbers are considered equal if there are {@code (maxUlps - 1)} * (or fewer) floating point numbers between them, i.e. two adjacent floating * point numbers are considered equal. * Adapted from <a * href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm"> * Bruce Dawson</a> * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point * values between {@code x} and {@code y}. * @return {@code true} if there are fewer than {@code maxUlps} floating * point values between {@code x} and {@code y}. */ public static boolean equals(double x, double y, int maxUlps) { long xInt = Double.doubleToLongBits(x); long yInt = Double.doubleToLongBits(y); // Make lexicographically ordered as a two's-complement integer. if (xInt < 0) { xInt = SGN_MASK - xInt; } if (yInt < 0) { yInt = SGN_MASK - yInt; } final boolean isEqual = FastMath.abs(xInt - yInt) <= maxUlps; return isEqual && !Double.isNaN(x) && !Double.isNaN(y); } /** * Returns true if both arguments are NaN or if they are equal as defined * by {@link #equals(double,double,int) equals(x, y, maxUlps)}. * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point * values between {@code x} and {@code y}. * @return {@code true} if both arguments are NaN or if there are less than * {@code maxUlps} floating point values between {@code x} and {@code y}. * @since 2.2 */ public static boolean equalsIncludingNaN(double x, double y, int maxUlps) { return (Double.isNaN(x) && Double.isNaN(y)) || equals(x, y, maxUlps); } /** * Rounds the given value to the specified number of decimal places. * The value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x Value to round. * @param scale Number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ public static double round(double x, int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Rounds the given value to the specified number of decimal places. * The value is rounded using the given method which is any method defined * in {@link BigDecimal}. * If {@code x} is infinite or {@code NaN}, then the value of {@code x} is * returned unchanged, regardless of the other parameters. * * @param x Value to round. * @param scale Number of digits to the right of the decimal point. * @param roundingMethod Rounding method as defined in {@link BigDecimal}. * @return the rounded value. * @throws ArithmeticException if {@code roundingMethod == ROUND_UNNECESSARY} * and the specified scaling operation would require rounding. * @throws IllegalArgumentException if {@code roundingMethod} does not * represent a valid rounding mode. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ public static double round(double x, int scale, int roundingMethod) { try { return (new BigDecimal(Double.toString(x)).setScale(scale, roundingMethod)).doubleValue(); } catch (NumberFormatException ex) { if (Double.isInfinite(x)) { return x; } else { return Double.NaN; } } } /** * Rounds the given value to the specified number of decimal places. * The value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x Value to round. * @param scale Number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ public static float round(float x, int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Rounds the given value to the specified number of decimal places. * The value is rounded using the given method which is any method defined * in {@link BigDecimal}. * * @param x Value to round. * @param scale Number of digits to the right of the decimal point. * @param roundingMethod Rounding method as defined in {@link BigDecimal}. * @return the rounded value. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) * @throws MathArithmeticException if an exact operation is required but result is not exact * @throws MathIllegalArgumentException if {@code roundingMethod} is not a valid rounding method. */ public static float round(float x, int scale, int roundingMethod) throws MathArithmeticException, MathIllegalArgumentException { final float sign = FastMath.copySign(1f, x); final float factor = (float) FastMath.pow(10.0f, scale) * sign; return (float) roundUnscaled(x * factor, sign, roundingMethod) / factor; } /** * Rounds the given non-negative value to the "nearest" integer. Nearest is * determined by the rounding method specified. Rounding methods are defined * in {@link BigDecimal}. * * @param unscaled Value to round. * @param sign Sign of the original, scaled value. * @param roundingMethod Rounding method, as defined in {@link BigDecimal}. * @return the rounded value. * @throws MathArithmeticException if an exact operation is required but result is not exact * @throws MathIllegalArgumentException if {@code roundingMethod} is not a valid rounding method. * @since 1.1 (previously in {@code MathUtils}, moved as of version 3.0) */ private static double roundUnscaled(double unscaled, double sign, int roundingMethod) throws MathArithmeticException, MathIllegalArgumentException { switch (roundingMethod) { case BigDecimal.ROUND_CEILING: if (sign == -1) { unscaled = FastMath.floor(FastMath.nextAfter(unscaled, Double.NEGATIVE_INFINITY)); } else { unscaled = FastMath.ceil(FastMath.nextAfter(unscaled, Double.POSITIVE_INFINITY)); } break; case BigDecimal.ROUND_DOWN: unscaled = FastMath.floor(FastMath.nextAfter(unscaled, Double.NEGATIVE_INFINITY)); break; case BigDecimal.ROUND_FLOOR: if (sign == -1) { unscaled = FastMath.ceil(FastMath.nextAfter(unscaled, Double.POSITIVE_INFINITY)); } else { unscaled = FastMath.floor(FastMath.nextAfter(unscaled, Double.NEGATIVE_INFINITY)); } break; case BigDecimal.ROUND_HALF_DOWN: { unscaled = FastMath.nextAfter(unscaled, Double.NEGATIVE_INFINITY); double fraction = unscaled - FastMath.floor(unscaled); if (fraction > 0.5) { unscaled = FastMath.ceil(unscaled); } else { unscaled = FastMath.floor(unscaled); } break; } case BigDecimal.ROUND_HALF_EVEN: { double fraction = unscaled - FastMath.floor(unscaled); if (fraction > 0.5) { unscaled = FastMath.ceil(unscaled); } else if (fraction < 0.5) { unscaled = FastMath.floor(unscaled); } else { // The following equality test is intentional and needed for rounding purposes if (FastMath.floor(unscaled) / 2.0 == FastMath.floor(Math.floor(unscaled) / 2.0)) { // even unscaled = FastMath.floor(unscaled); } else { // odd unscaled = FastMath.ceil(unscaled); } } break; } case BigDecimal.ROUND_HALF_UP: { unscaled = FastMath.nextAfter(unscaled, Double.POSITIVE_INFINITY); double fraction = unscaled - FastMath.floor(unscaled); if (fraction >= 0.5) { unscaled = FastMath.ceil(unscaled); } else { unscaled = FastMath.floor(unscaled); } break; } case BigDecimal.ROUND_UNNECESSARY: if (unscaled != FastMath.floor(unscaled)) { throw new MathArithmeticException(); } break; case BigDecimal.ROUND_UP: unscaled = FastMath.ceil(FastMath.nextAfter(unscaled, Double.POSITIVE_INFINITY)); break; default: throw new MathIllegalArgumentException(LocalizedFormats.INVALID_ROUNDING_METHOD, roundingMethod, "ROUND_CEILING", BigDecimal.ROUND_CEILING, "ROUND_DOWN", BigDecimal.ROUND_DOWN, "ROUND_FLOOR", BigDecimal.ROUND_FLOOR, "ROUND_HALF_DOWN", BigDecimal.ROUND_HALF_DOWN, "ROUND_HALF_EVEN", BigDecimal.ROUND_HALF_EVEN, "ROUND_HALF_UP", BigDecimal.ROUND_HALF_UP, "ROUND_UNNECESSARY", BigDecimal.ROUND_UNNECESSARY, "ROUND_UP", BigDecimal.ROUND_UP); } return unscaled; } /** * Computes a number {@code delta} close to {@code originalDelta} with * the property that <pre><code> * x + delta - x * </code></pre> * is exactly machine-representable. * This is useful when computing numerical derivatives, in order to reduce * roundoff errors. * * @param x Value. * @param originalDelta Offset value. * @return a number {@code delta} so that {@code x + delta} and {@code x} * differ by a representable floating number. */ public static double representableDelta(double x, double originalDelta) { return x + originalDelta - x; } }