Java tutorial
/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ package activeSegmentation.learning; import java.util.logging.Level; import java.util.logging.Logger; import weka.classifiers.functions.supportVector.PolyKernel; import weka.core.Instance; /** * @author Oscar Gabriel Reyes Pupo */ public class SMO extends weka.classifiers.functions.SMO { /** * */ private static final long serialVersionUID = -221052987032617441L; /** * Empty constructor */ public SMO() { super(); setBuildLogisticModels(true); //To be linear kernel, equals to used in the related papers setC(1.0); PolyKernel poly = new PolyKernel(); poly.setExponent(1.0); setKernel(poly); } /** * * @return The array of Binary SMO */ public BinarySMO[][] getM_classifiers() { return m_classifiers; } /** * * @param m_classifiers the array of binary SMO */ public void setM_classifiers(BinarySMO[][] m_classifiers) { this.m_classifiers = m_classifiers; } public double SVMOutput(Instance instance) { try { return m_classifiers[0][1].SVMOutput(-1, instance); } catch (Exception ex) { Logger.getLogger(SMO.class.getName()).log(Level.SEVERE, null, ex); } return 0; } }