Util.java Source code

Java tutorial

Introduction

Here is the source code for Util.java

Source

import java.awt.Point;

public class Util {

    /**
     * Returns distance to segment
     * 
     * @param ss
     *            segment start point
     * @param se
     *            segment end point
     * @param p
     *            point to found closest point on segment
     * @return distance to segment
     */
    public static double getDistanceToSegment(Point ss, Point se, Point p) {
        return getDistanceToSegment(ss.x, ss.y, se.x, se.y, p.x, p.y);
    }

    /**
     * Returns distance to segment
     * 
     * @param sx1
     *            segment x coord 1
     * @param sy1
     *            segment y coord 1
     * @param sx2
     *            segment x coord 2
     * @param sy2
     *            segment y coord 2
     * @param px
     *            point x coord
     * @param py
     *            point y coord
     * @return distance to segment
     */
    public static double getDistanceToSegment(int sx1, int sy1, int sx2, int sy2, int px, int py) {
        Point closestPoint = getClosestPointOnSegment(sx1, sy1, sx2, sy2, px, py);
        return getDistance(closestPoint.x, closestPoint.y, px, py);
    }

    /**
     * Returns distance between two 2D points
     * 
     * @param point1
     *            first point
     * @param point2
     *            second point
     * @return distance between points
     */
    public static double getDistance(Point point1, Point point2) {
        return getDistance(point1.x, point1.y, point2.x, point2.y);
    }

    /**
     * Returns distance between two sets of coords
     * 
     * @param x1
     *            first x coord
     * @param y1
     *            first y coord
     * @param x2
     *            second x coord
     * @param y2
     *            second y coord
     * @return distance between sets of coords
     */
    public static double getDistance(float x1, float y1, float x2, float y2) {
        // using long to avoid possible overflows when multiplying
        double dx = x2 - x1;
        double dy = y2 - y1;

        // return Math.hypot(x2 - x1, y2 - y1); // Extremely slow
        // return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2)); // 20 times faster than hypot
        return Math.sqrt(dx * dx + dy * dy); // 10 times faster then previous line
    }

    /**
     * Returns closest point on segment to point
     * 
     * @param ss
     *            segment start point
     * @param se
     *            segment end point
     * @param p
     *            point to found closest point on segment
     * @return closest point on segment to p
     */
    public static Point getClosestPointOnSegment(Point ss, Point se, Point p) {
        return getClosestPointOnSegment(ss.x, ss.y, se.x, se.y, p.x, p.y);
    }

    /**
     * Returns closest point on segment to point
     * 
     * @param sx1
     *            segment x coord 1
     * @param sy1
     *            segment y coord 1
     * @param sx2
     *            segment x coord 2
     * @param sy2
     *            segment y coord 2
     * @param px
     *            point x coord
     * @param py
     *            point y coord
     * @return closets point on segment to point
     */
    public static Point getClosestPointOnSegment(int sx1, int sy1, int sx2, int sy2, int px, int py) {
        double xDelta = sx2 - sx1;
        double yDelta = sy2 - sy1;

        if ((xDelta == 0) && (yDelta == 0)) {
            throw new IllegalArgumentException("Segment start equals segment end");
        }

        double u = ((px - sx1) * xDelta + (py - sy1) * yDelta) / (xDelta * xDelta + yDelta * yDelta);

        final Point closestPoint;
        if (u < 0) {
            closestPoint = new Point(sx1, sy1);
        } else if (u > 1) {
            closestPoint = new Point(sx2, sy2);
        } else {
            closestPoint = new Point((int) Math.round(sx1 + u * xDelta), (int) Math.round(sy1 + u * yDelta));
        }

        return closestPoint;
    }
}