Java tutorial
import java.io.File; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * */ public class Main { /** * Returns an exact representation of the <a * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial * Coefficient</a>, "<code>n choose k</code>", the number of * <code>k</code>-element subsets that can be selected from an * <code>n</code>-element set. * <p> * <Strong>Preconditions</strong>: * <ul> * <li> <code>0 <= k <= n </code> (otherwise * <code>IllegalArgumentException</code> is thrown)</li> * <li> The result is small enough to fit into a <code>long</code>. The * largest value of <code>n</code> for which all coefficients are * <code> < Long.MAX_VALUE</code> is 66. If the computed value exceeds * <code>Long.MAX_VALUE</code> an <code>ArithMeticException * </code> is * thrown.</li> * </ul></p> * * @param n the size of the set * @param k the size of the subsets to be counted * @return <code>n choose k</code> * @throws IllegalArgumentException if preconditions are not met. * @throws ArithmeticException if the result is too large to be represented * by a long integer. */ public static long binomialCoefficient(final int n, final int k) { if (n < k) { throw new IllegalArgumentException("must have n >= k for binomial coefficient (n,k)"); } if (n < 0) { throw new IllegalArgumentException("must have n >= 0 for binomial coefficient (n,k)"); } if ((n == k) || (k == 0)) { return 1; } if ((k == 1) || (k == n - 1)) { return n; } long result = Math.round(binomialCoefficientDouble(n, k)); if (result == Long.MAX_VALUE) { throw new ArithmeticException("result too large to represent in a long integer"); } return result; } /** * Returns a <code>double</code> representation of the <a * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial * Coefficient</a>, "<code>n choose k</code>", the number of * <code>k</code>-element subsets that can be selected from an * <code>n</code>-element set. * <p> * <Strong>Preconditions</strong>: * <ul> * <li> <code>0 <= k <= n </code> (otherwise * <code>IllegalArgumentException</code> is thrown)</li> * <li> The result is small enough to fit into a <code>double</code>. The * largest value of <code>n</code> for which all coefficients are < * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE, * Double.POSITIVE_INFINITY is returned</li> * </ul></p> * * @param n the size of the set * @param k the size of the subsets to be counted * @return <code>n choose k</code> * @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientDouble(final int n, final int k) { return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + 0.5); } /** * Returns the natural <code>log</code> of the <a * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial * Coefficient</a>, "<code>n choose k</code>", the number of * <code>k</code>-element subsets that can be selected from an * <code>n</code>-element set. * <p> * <Strong>Preconditions</strong>: * <ul> * <li> <code>0 <= k <= n </code> (otherwise * <code>IllegalArgumentException</code> is thrown)</li> * </ul></p> * * @param n the size of the set * @param k the size of the subsets to be counted * @return <code>n choose k</code> * @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientLog(final int n, final int k) { if (n < k) { throw new IllegalArgumentException("must have n >= k for binomial coefficient (n,k)"); } if (n < 0) { throw new IllegalArgumentException("must have n >= 0 for binomial coefficient (n,k)"); } if ((n == k) || (k == 0)) { return 0; } if ((k == 1) || (k == n - 1)) { return Math.log((double) n); } double logSum = 0; // n!/k! for (int i = k + 1; i <= n; i++) { logSum += Math.log((double) i); } // divide by (n-k)! for (int i = 2; i <= n - k; i++) { logSum -= Math.log((double) i); } return logSum; } }