Java tutorial
import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.IOException; import java.io.Serializable; import java.util.Random; /** * Taken from ecj modified in some of the casts according to the inspection tool * Added @param and @return to some JavaDocs **/ /** * <h3>MersenneTwister and MersenneTwisterFast</h3> * <p><b>Version 13</b>, based on version MT199937(99/10/29) * of the Mersenne Twister algorithm found at * <a href="http://www.math.keio.ac.jp/matumoto/emt.html"> * The Mersenne Twister Home Page</a>, with the initialization * improved using the new 2002/1/26 initialization algorithm * By Sean Luke, October 2004. * * <p><b>MersenneTwister</b> is a drop-in subclass replacement * for java.util.Random. It is properly synchronized and * can be used in a multithreaded environment. On modern VMs such * as HotSpot, it is approximately 1/3 slower than java.util.Random. * * <p><b>MersenneTwisterFast</b> is not a subclass of java.util.Random. It has * the same public methods as Random does, however, and it is * algorithmically identical to MersenneTwister. MersenneTwisterFast * has hard-code inlined all of its methods directly, and made all of them * final (well, the ones of consequence anyway). Further, these * methods are <i>not</i> synchronized, so the same MersenneTwisterFast * instance cannot be shared by multiple threads. But all this helps * MersenneTwisterFast achieve well over twice the speed of MersenneTwister. * java.util.Random is about 1/3 slower than MersenneTwisterFast. * * <h3>About the Mersenne Twister</h3> * <p>This is a Java version of the C-program for MT19937: Integer version. * The MT19937 algorithm was created by Makoto Matsumoto and Takuji Nishimura, * who ask: "When you use this, send an email to: matumoto@math.keio.ac.jp * with an appropriate reference to your work". Indicate that this * is a translation of their algorithm into Java. * * <p><b>Reference. </b> * Makato Matsumoto and Takuji Nishimura, * "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform * Pseudo-Random Number Generator", * <i>ACM Transactions on Modeling and. Computer Simulation,</i> * Vol. 8, No. 1, January 1998, pp 3--30. * * <h3>About this Version</h3> * * <p><b>Changes Since V12:</b> clone() method added. * * <p><b>Changes Since V11:</b> stateEquals(...) method added. MersenneTwisterFast * is equal to other MersenneTwisterFasts with identical state; likewise * MersenneTwister is equal to other MersenneTwister with identical state. * This isn't equals(...) because that requires a contract of immutability * to compare by value. * * <p><b>Changes Since V10:</b> A documentation error suggested that * setSeed(int[]) required an int[] array 624 long. In fact, the array * can be any non-zero length. The new version also checks for this fact. * * <p><b>Changes Since V9:</b> readState(stream) and writeState(stream) * provided. * * <p><b>Changes Since V8:</b> setSeed(int) was only using the first 28 bits * of the seed; it should have been 32 bits. For small-number seeds the * behavior is identical. * * <p><b>Changes Since V7:</b> A documentation error in MersenneTwisterFast * (but not MersenneTwister) stated that nextDouble selects uniformly from * the full-open interval [0,1]. It does not. nextDouble's contract is * identical across MersenneTwisterFast, MersenneTwister, and java.util.Random, * namely, selection in the half-open interval [0,1). That is, 1.0 should * not be returned. A similar contract exists in nextFloat. * * <p><b>Changes Since V6:</b> License has changed from LGPL to BSD. * New timing information to compare against * java.util.Random. Recent versions of HotSpot have helped Random increase * in speed to the point where it is faster than MersenneTwister but slower * than MersenneTwisterFast (which should be the case, as it's a less complex * algorithm but is synchronized). * * <p><b>Changes Since V5:</b> New empty constructor made to work the same * as java.util.Random -- namely, it seeds based on the current time in * milliseconds. * * <p><b>Changes Since V4:</b> New initialization algorithms. See * (see <a href="http://www.math.keio.ac.jp/matumoto/MT2002/emt19937ar.html"</a> * http://www.math.keio.ac.jp/matumoto/MT2002/emt19937ar.html</a>) * * <p>The MersenneTwister code is based on standard MT19937 C/C++ * code by Takuji Nishimura, * with suggestions from Topher Cooper and Marc Rieffel, July 1997. * The code was originally translated into Java by Michael Lecuyer, * January 1999, and the original code is Copyright (c) 1999 by Michael Lecuyer. * * <h3>Java notes</h3> * * <p>This implementation implements the bug fixes made * in Java 1.2's version of Random, which means it can be used with * earlier versions of Java. See * <a href="http://www.javasoft.com/products/jdk/1.2/docs/api/java/util/Random.html"> * the JDK 1.2 java.util.Random documentation</a> for further documentation * on the random-number generation contracts made. Additionally, there's * an undocumented bug in the JDK java.util.Random.nextBytes() method, * which this code fixes. * * <p> Just like java.util.Random, this * generator accepts a long seed but doesn't use all of it. java.util.Random * uses 48 bits. The Mersenne Twister instead uses 32 bits (int size). * So it's best if your seed does not exceed the int range. * * <p>MersenneTwister can be used reliably * on JDK version 1.1.5 or above. Earlier Java versions have serious bugs in * java.util.Random; only MersenneTwisterFast (and not MersenneTwister nor * java.util.Random) should be used with them. * * <h3>License</h3> * * Copyright (c) 2003 by Sean Luke. <br> * Portions copyright (c) 1993 by Michael Lecuyer. <br> * All rights reserved. <br> * * <p>Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * <ul> * <li> Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * <li> Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * <li> Neither the name of the copyright owners, their employers, nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * </ul> * <p>THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * @version 13 */ // Note: this class is hard-inlined in all of its methods. This makes some of // the methods well-nigh unreadable in their complexity. In fact, the Mersenne // Twister is fairly easy code to understand: if you're trying to get a handle // on the code, I strongly suggest looking at MersenneTwister.java first. // -- Sean public class MersenneTwisterFast implements Serializable, Cloneable { // Period parameters private static final int N = 624; private static final int M = 397; private static final int MATRIX_A = 0x9908b0df; // private static final * constant vector a private static final int UPPER_MASK = 0x80000000; // most significant w-r bits private static final int LOWER_MASK = 0x7fffffff; // least significant r bits // Tempering parameters private static final int TEMPERING_MASK_B = 0x9d2c5680; private static final int TEMPERING_MASK_C = 0xefc60000; private int mt[]; // the array for the state vector private int mti; // mti==N+1 means mt[N] is not initialized private int mag01[]; // a good initial seed (of int size, though stored in a long) //private static final long GOOD_SEED = 4357; private double __nextNextGaussian; private boolean __haveNextNextGaussian; /* We're overriding all internal data, to my knowledge, so this should be okay */ public Object clone() throws CloneNotSupportedException { MersenneTwisterFast f = (MersenneTwisterFast) (super.clone()); f.mt = mt.clone(); f.mag01 = mag01.clone(); return f; } public boolean stateEquals(Object o) { if (o == this) return true; if (o == null || !(o instanceof MersenneTwisterFast)) return false; MersenneTwisterFast other = (MersenneTwisterFast) o; if (mti != other.mti) return false; for (int x = 0; x < mag01.length; x++) if (mag01[x] != other.mag01[x]) return false; for (int x = 0; x < mt.length; x++) if (mt[x] != other.mt[x]) return false; return true; } /** Reads the entire state of the MersenneTwister RNG from the stream * @param stream input stream * @throws IOException exception from stream reading */ public void readState(DataInputStream stream) throws IOException { int len = mt.length; for (int x = 0; x < len; x++) mt[x] = stream.readInt(); len = mag01.length; for (int x = 0; x < len; x++) mag01[x] = stream.readInt(); mti = stream.readInt(); __nextNextGaussian = stream.readDouble(); __haveNextNextGaussian = stream.readBoolean(); } /** Writes the entire state of the MersenneTwister RNG to the stream * @param stream output stream * @throws IOException exception from stream reading */ public void writeState(DataOutputStream stream) throws IOException { int len = mt.length; for (int x = 0; x < len; x++) stream.writeInt(mt[x]); len = mag01.length; for (int x = 0; x < len; x++) stream.writeInt(mag01[x]); stream.writeInt(mti); stream.writeDouble(__nextNextGaussian); stream.writeBoolean(__haveNextNextGaussian); } /** * Constructor using the default seed. */ public MersenneTwisterFast() { this(System.currentTimeMillis()); } /** * Constructor using a given seed. Though you pass this seed in * as a long, it's best to make sure it's actually an integer. * @param seed seed */ public MersenneTwisterFast(final long seed) { setSeed(seed); } /** * Constructor using an array of integers as seed. * Your array must have a non-zero length. Only the first 624 integers * in the array are used; if the array is shorter than this then * integers are repeatedly used in a wrap-around fashion. * @param array seed array */ public MersenneTwisterFast(final int[] array) { setSeed(array); } /** * Initalize the pseudo random number generator. Don't * pass in a long that's bigger than an int (Mersenne Twister * only uses the first 32 bits for its seed). */ synchronized public void setSeed(final long seed) { // Due to a bug in java.util.Random clear up to 1.2, we're // doing our own Gaussian variable. __haveNextNextGaussian = false; mt = new int[N]; mag01 = new int[2]; mag01[0] = 0x0; mag01[1] = MATRIX_A; mt[0] = (int) (seed); for (mti = 1; mti < N; mti++) { mt[mti] = (1812433253 * (mt[mti - 1] ^ (mt[mti - 1] >>> 30)) + mti); /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ mt[mti] &= 0xffffffff; /* for >32 bit machines */ } } /** * Sets the seed of the MersenneTwister using an array of integers. * Your array must have a non-zero length. Only the first 624 integers * in the array are used; if the array is shorter than this then * integers are repeatedly used in a wrap-around fashion. */ synchronized public void setSeed(final int[] array) { if (array.length == 0) throw new IllegalArgumentException("Array length must be greater than zero"); int i, j, k; setSeed(19650218); i = 1; j = 0; k = (N > array.length ? N : array.length); for (; k != 0; k--) { mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * 1664525)) + array[j] + j; /* non linear */ mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */ i++; j++; if (i >= N) { mt[0] = mt[N - 1]; i = 1; } if (j >= array.length) j = 0; } for (k = N - 1; k != 0; k--) { mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * 1566083941)) - i; /* non linear */ mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */ i++; if (i >= N) { mt[0] = mt[N - 1]; i = 1; } } mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */ } public final int nextInt() { int y; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) return y; } public final short nextShort() { int y; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) return (short) (y >>> 16); } public final char nextChar() { int y; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) return (char) (y >>> 16); } public final boolean nextBoolean() { int y; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) return (y >>> 31) != 0; } /** This generates a coin flip with a probability <tt>probability</tt> * of returning true, else returning false. <tt>probability</tt> must * be between 0.0 and 1.0, inclusive. Not as precise a random real * event as nextBoolean(double), but twice as fast. To explicitly * use this, remember you may need to cast to float first. * @param probability flip probability * @return next boolean */ public final boolean nextBoolean(final float probability) { int y; if (probability < 0.0f || probability > 1.0f) throw new IllegalArgumentException("probability must be between 0.0 and 1.0 inclusive."); if (probability == 0.0f) return false; // fix half-open issues else if (probability == 1.0f) return true; // fix half-open issues if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) return (y >>> 8) / ((float) (1 << 24)) < probability; } /** This generates a coin flip with a probability <tt>probability</tt> * of returning true, else returning false. <tt>probability</tt> must * be between 0.0 and 1.0, inclusive. */ @SuppressWarnings({ "ConstantConditions" }) public final boolean nextBoolean(final double probability) { int y; int z; if (probability < 0.0 || probability > 1.0) throw new IllegalArgumentException("probability must be between 0.0 and 1.0 inclusive."); if (probability == 0.0) return false; // fix half-open issues else if (probability == 1.0) return true; // fix half-open issues if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (z >>> 1) ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (z >>> 1) ^ mag01[z & 0x1]; } z = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (z >>> 1) ^ mag01[z & 0x1]; mti = 0; } z = mt[mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= (z << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= (z << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= (z >>> 18); // TEMPERING_SHIFT_L(z) /* derived from nextDouble documentation in jdk 1.2 docs, see top */ return ((((long) (y >>> 6)) << 27) + (z >>> 5)) / (double) (1L << 53) < probability; } public final byte nextByte() { int y; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) return (byte) (y >>> 24); } public final void nextBytes(byte[] bytes) { int y; for (int x = 0; x < bytes.length; x++) { if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) bytes[x] = (byte) (y >>> 24); } } @SuppressWarnings({ "ConstantConditions" }) public final long nextLong() { int y; int z; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (z >>> 1) ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (z >>> 1) ^ mag01[z & 0x1]; } z = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (z >>> 1) ^ mag01[z & 0x1]; mti = 0; } z = mt[mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= (z << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= (z << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= (z >>> 18); // TEMPERING_SHIFT_L(z) return (((long) y) << 32) + (long) z; } /** Returns a long drawn uniformly from 0 to n-1. Suffice it to say, * n must be > 0, or an IllegalArgumentException is raised. * @param n max long * @return next long */ @SuppressWarnings({ "ConstantConditions" }) public final long nextLong(final long n) { if (n <= 0) throw new IllegalArgumentException("n must be positive"); long bits, val; do { int y; int z; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (z >>> 1) ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (z >>> 1) ^ mag01[z & 0x1]; } z = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (z >>> 1) ^ mag01[z & 0x1]; mti = 0; } z = mt[mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= (z << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= (z << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= (z >>> 18); // TEMPERING_SHIFT_L(z) bits = (((((long) y) << 32) + (long) z) >>> 1); val = bits % n; } while (bits - val + (n - 1) < 0); return val; } /** Returns a random double in the half-open range from [0.0,1.0). Thus 0.0 is a valid * result but 1.0 is not. */ @SuppressWarnings({ "ConstantConditions" }) public final double nextDouble() { int y; int z; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (z >>> 1) ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (z >>> 1) ^ mag01[z & 0x1]; } z = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (z >>> 1) ^ mag01[z & 0x1]; mti = 0; } z = mt[mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= (z << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= (z << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= (z >>> 18); // TEMPERING_SHIFT_L(z) /* derived from nextDouble documentation in jdk 1.2 docs, see top */ return ((((long) (y >>> 6)) << 27) + (z >>> 5)) / (double) (1L << 53); } @SuppressWarnings({ "ConstantConditions" }) public final double nextGaussian() { if (__haveNextNextGaussian) { __haveNextNextGaussian = false; return __nextNextGaussian; } else { double v1, v2, s; do { int y; int z; int a; int b; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (z >>> 1) ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (z >>> 1) ^ mag01[z & 0x1]; } z = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (z >>> 1) ^ mag01[z & 0x1]; mti = 0; } z = mt[mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= (z << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= (z << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= (z >>> 18); // TEMPERING_SHIFT_L(z) if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { a = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (a >>> 1) ^ mag01[a & 0x1]; } for (; kk < N - 1; kk++) { a = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (a >>> 1) ^ mag01[a & 0x1]; } a = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (a >>> 1) ^ mag01[a & 0x1]; mti = 0; } a = mt[mti++]; a ^= a >>> 11; // TEMPERING_SHIFT_U(a) a ^= (a << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(a) a ^= (a << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(a) a ^= (a >>> 18); // TEMPERING_SHIFT_L(a) if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { b = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (b >>> 1) ^ mag01[b & 0x1]; } for (; kk < N - 1; kk++) { b = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (b >>> 1) ^ mag01[b & 0x1]; } b = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (b >>> 1) ^ mag01[b & 0x1]; mti = 0; } b = mt[mti++]; b ^= b >>> 11; // TEMPERING_SHIFT_U(b) b ^= (b << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(b) b ^= (b << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(b) b ^= (b >>> 18); // TEMPERING_SHIFT_L(b) /* derived from nextDouble documentation in jdk 1.2 docs, see top */ v1 = 2 * (((((long) (y >>> 6)) << 27) + (z >>> 5)) / (double) (1L << 53)) - 1; v2 = 2 * (((((long) (a >>> 6)) << 27) + (b >>> 5)) / (double) (1L << 53)) - 1; s = v1 * v1 + v2 * v2; } while (s >= 1 || s == 0); double multiplier = /*Strict*/Math.sqrt(-2 * /*Strict*/Math.log(s) / s); __nextNextGaussian = v2 * multiplier; __haveNextNextGaussian = true; return v1 * multiplier; } } /** Returns a random float in the half-open range from [0.0f,1.0f). Thus 0.0f is a valid * result but 1.0f is not. * @return next float */ public final float nextFloat() { int y; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) return (y >>> 8) / ((float) (1 << 24)); } /** Returns an integer drawn uniformly from 0 to n-1. Suffice it to say, * n must be > 0, or an IllegalArgumentException is raised. */ @SuppressWarnings({ "ConstantConditions" }) public final int nextInt(final int n) { if (n <= 0) throw new IllegalArgumentException("n must be positive"); if ((n & -n) == n) // i.e., n is a power of 2 { int y; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) return (int) ((n * (long) (y >>> 1)) >> 31); } int bits, val; do { int y; if (mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= (y >>> 18); // TEMPERING_SHIFT_L(y) bits = (y >>> 1); val = bits % n; } while (bits - val + (n - 1) < 0); return val; } /** * Tests the code. * @param args arguments */ @SuppressWarnings({ "ConstantConditions" }) public static void main(String args[]) { int j; MersenneTwisterFast r; // CORRECTNESS TEST // COMPARE WITH http://www.math.keio.ac.jp/matumoto/CODES/MT2002/mt19937ar.out r = new MersenneTwisterFast(new int[] { 0x123, 0x234, 0x345, 0x456 }); System.out.println("Output of MersenneTwisterFast with new (2002/1/26) seeding mechanism"); for (j = 0; j < 1000; j++) { // first, convert the int from signed to "unsigned" long l = (long) r.nextInt(); if (l < 0) l += 4294967296L; // max int value String s = String.valueOf(l); while (s.length() < 10) s = " " + s; // buffer System.out.print(s + " "); if (j % 5 == 4) System.out.println(); } // SPEED TEST final long SEED = 4357; int xx; long ms; System.out.println("\nTime to test grabbing 100000000 ints"); Random rr = new Random(SEED); xx = 0; ms = System.currentTimeMillis(); for (j = 0; j < 100000000; j++) xx += rr.nextInt(); System.out .println("java.util.Random: " + (System.currentTimeMillis() - ms) + " Ignore this: " + xx); r = new MersenneTwisterFast(SEED); ms = System.currentTimeMillis(); xx = 0; for (j = 0; j < 100000000; j++) xx += r.nextInt(); System.out.println( "Mersenne Twister Fast: " + (System.currentTimeMillis() - ms) + " Ignore this: " + xx); // TEST TO COMPARE TYPE CONVERSION BETWEEN // MersenneTwisterFast.java AND MersenneTwister.java System.out.println("\nGrab the first 1000 booleans"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextBoolean() + " "); if (j % 8 == 7) System.out.println(); } if (!(j % 8 == 7)) System.out.println(); System.out.println("\nGrab 1000 booleans of increasing probability using nextBoolean(double)"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextBoolean(j / 999.0) + " "); if (j % 8 == 7) System.out.println(); } if (!(j % 8 == 7)) System.out.println(); System.out.println("\nGrab 1000 booleans of increasing probability using nextBoolean(float)"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextBoolean(j / 999.0f) + " "); if (j % 8 == 7) System.out.println(); } if (!(j % 8 == 7)) System.out.println(); byte[] bytes = new byte[1000]; System.out.println("\nGrab the first 1000 bytes using nextBytes"); r = new MersenneTwisterFast(SEED); r.nextBytes(bytes); for (j = 0; j < 1000; j++) { System.out.print(bytes[j] + " "); if (j % 16 == 15) System.out.println(); } if (!(j % 16 == 15)) System.out.println(); byte b; System.out.println("\nGrab the first 1000 bytes -- must be same as nextBytes"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print((b = r.nextByte()) + " "); if (b != bytes[j]) System.out.print("BAD "); if (j % 16 == 15) System.out.println(); } if (!(j % 16 == 15)) System.out.println(); System.out.println("\nGrab the first 1000 shorts"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextShort() + " "); if (j % 8 == 7) System.out.println(); } if (!(j % 8 == 7)) System.out.println(); System.out.println("\nGrab the first 1000 ints"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextInt() + " "); if (j % 4 == 3) System.out.println(); } if (!(j % 4 == 3)) System.out.println(); System.out.println("\nGrab the first 1000 ints of different sizes"); r = new MersenneTwisterFast(SEED); int max = 1; for (j = 0; j < 1000; j++) { System.out.print(r.nextInt(max) + " "); max *= 2; if (max <= 0) max = 1; if (j % 4 == 3) System.out.println(); } if (!(j % 4 == 3)) System.out.println(); System.out.println("\nGrab the first 1000 longs"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextLong() + " "); if (j % 3 == 2) System.out.println(); } if (!(j % 3 == 2)) System.out.println(); System.out.println("\nGrab the first 1000 longs of different sizes"); r = new MersenneTwisterFast(SEED); long max2 = 1; for (j = 0; j < 1000; j++) { System.out.print(r.nextLong(max2) + " "); max2 *= 2; if (max2 <= 0) max2 = 1; if (j % 4 == 3) System.out.println(); } if (!(j % 4 == 3)) System.out.println(); System.out.println("\nGrab the first 1000 floats"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextFloat() + " "); if (j % 4 == 3) System.out.println(); } if (!(j % 4 == 3)) System.out.println(); System.out.println("\nGrab the first 1000 doubles"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextDouble() + " "); if (j % 3 == 2) System.out.println(); } if (!(j % 3 == 2)) System.out.println(); System.out.println("\nGrab the first 1000 gaussian doubles"); r = new MersenneTwisterFast(SEED); for (j = 0; j < 1000; j++) { System.out.print(r.nextGaussian() + " "); if (j % 3 == 2) System.out.println(); } if (!(j % 3 == 2)) System.out.println(); } }