Rnd.java Source code

Java tutorial

Introduction

Here is the source code for Rnd.java

Source

/*
 * This file is part of aion-emu <aion-emu.com>.
 *
 * aion-emu is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * aion-emu is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with aion-emu.  If not, see <http://www.gnu.org/licenses/>.
 */
//package com.aionemu.commons.utils;

import java.util.Random;

/**
 * @author Balancer
 * 
 */
public class Rnd {
    private static final MTRandom rnd = new MTRandom();

    /**
     * @return rnd
     * 
     */
    public static float get() // get random number from 0 to 1
    {
        return rnd.nextFloat();
    }

    /**
     * Gets a random number from 0(inclusive) to n(exclusive)
     * 
     * @param n
     *            The superior limit (exclusive)
     * @return A number from 0 to n-1
     */
    public static int get(int n) {
        return (int) Math.floor(rnd.nextDouble() * n);
    }

    /**
     * @param min
     * @param max
     * @return value
     */
    public static int get(int min, int max) // get random number from
    // min to max (not max-1 !)
    {
        return min + (int) Math.floor(rnd.nextDouble() * (max - min + 1));
    }

    /**
     * @param n
     * @return n
     */
    public static int nextInt(int n) {
        return (int) Math.floor(rnd.nextDouble() * n);
    }

    /**
     * @return int
     */
    public static int nextInt() {
        return rnd.nextInt();
    }

    /**
     * @return double
     */
    public static double nextDouble() {
        return rnd.nextDouble();
    }

    /**
     * @return double
     */
    public static double nextGaussian() {
        return rnd.nextGaussian();
    }

    /**
     * @return double
     */
    public static boolean nextBoolean() {
        return rnd.nextBoolean();
    }
}

/**
 * @author David Beaumont, Copyright 2005
 *         <p/>
 *         A Java implementation of the MT19937 (Mersenne Twister) pseudo random number generator algorithm based upon
 *         the original C code by Makoto Matsumoto and Takuji Nishimura (see <a
 *         href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html">
 *         http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html</a> for more information.
 *         <p/>
 *         As a subclass of java.util.Random this class provides a single canonical method next() for generating bits in
 *         the pseudo random number sequence. Anyone using this class should invoke the public inherited methods
 *         (nextInt(), nextFloat etc.) to obtain values as normal. This class should provide a drop-in replacement for
 *         the standard implementation of java.util.Random with the additional advantage of having a far longer period
 *         and the ability to use a far larger seed value.
 *         <p/>
 *         This is <b>not</b> a cryptographically strong source of randomness and should <b>not</b> be used for
 *         cryptographic systems or in any other situation where true random numbers are required.
 *         <p/>
 *         <!-- Creative Commons License --> <a href="http://creativecommons.org/licenses/LGPL/2.1/"><img
 *         alt="CC-GNU LGPL" border="0" src="http://creativecommons.org/images/public/cc-LGPL-a.png" /></a><br />
 *         This software is licensed under the <a href="http://creativecommons.org/licenses/LGPL/2.1/">CC-GNU LGPL</a>.
 *         <!-- /Creative Commons License --> <!-- <rdf:RDF xmlns="http://web.resource.org/cc/"
 *         xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <Work
 *         rdf:about=""> <license rdf:resource="http://creativecommons.org/licenses/LGPL/2.1/" /> <dc:type
 *         rdf:resource="http://purl.org/dc/dcmitype/Software" /> </Work> <License
 *         rdf:about="http://creativecommons.org/licenses/LGPL/2.1/"> <permits
 *         rdf:resource="http://web.resource.org/cc/Reproduction" /> <permits
 *         rdf:resource="http://web.resource.org/cc/Distribution" /> <requires
 *         rdf:resource="http://web.resource.org/cc/Notice" /> <permits
 *         rdf:resource="http://web.resource.org/cc/DerivativeWorks" /> <requires
 *         rdf:resource="http://web.resource.org/cc/ShareAlike" /> <requires
 *         rdf:resource="http://web.resource.org/cc/SourceCode" /> </License> </rdf:RDF> -->
 * @version 1.0
 */
class MTRandom extends Random {
    /**
     * Auto-generated serial version UID. Note that MTRandom does NOT support serialisation of its internal state and it
     * may even be necessary to implement read/write methods to re-seed it properly. This is only here to make Eclipse
     * shut up about it being missing.
     */
    private static final long serialVersionUID = -515082678588212038L;

    // Constants used in the original C implementation
    private final static int UPPER_MASK = 0x80000000;
    private final static int LOWER_MASK = 0x7fffffff;
    private final static int N = 624;
    private final static int M = 397;
    private final static int[] MAGIC = { 0x0, 0x9908b0df };
    private final static int MAGIC_FACTOR1 = 1812433253;
    private final static int MAGIC_FACTOR2 = 1664525;
    private final static int MAGIC_FACTOR3 = 1566083941;
    private final static int MAGIC_MASK1 = 0x9d2c5680;
    private final static int MAGIC_MASK2 = 0xefc60000;
    private final static int MAGIC_SEED = 19650218;
    private final static long DEFAULT_SEED = 5489L;

    // Internal state
    private transient int[] mt;
    private transient int mti;
    private transient boolean compat = false;

    // Temporary buffer used during setSeed(long)
    private transient int[] ibuf;

    /**
     * The default constructor for an instance of MTRandom. This invokes the no-argument constructor for
     * java.util.Random which will result in the class being initialised with a seed value obtained by calling
     * System.currentTimeMillis().
     */
    public MTRandom() {
    }

    /**
     * This version of the constructor can be used to implement identical behaviour to the original C code version of
     * this algorithm including exactly replicating the case where the seed value had not been set prior to calling
     * genrand_int32.
     * <p/>
     * If the compatibility flag is set to true, then the algorithm will be seeded with the same default value as was
     * used in the original C code. Furthermore the setSeed() method, which must take a 64 bit long value, will be
     * limited to using only the lower 32 bits of the seed to facilitate seamless migration of existing C code into Java
     * where identical behaviour is required.
     * <p/>
     * Whilst useful for ensuring backwards compatibility, it is advised that this feature not be used unless
     * specifically required, due to the reduction in strength of the seed value.
     * 
     * @param compatible
     *            Compatibility flag for replicating original behaviour.
     */
    public MTRandom(boolean compatible) {
        super(0L);
        compat = compatible;
        setSeed(compat ? DEFAULT_SEED : System.currentTimeMillis());
    }

    /**
     * This version of the constructor simply initialises the class with the given 64 bit seed value. For a better
     * random number sequence this seed value should contain as much entropy as possible.
     * 
     * @param seed
     *            The seed value with which to initialise this class.
     */
    public MTRandom(long seed) {
        super(seed);
    }

    /**
     * This version of the constructor initialises the class with the given byte array. All the data will be used to
     * initialise this instance.
     * 
     * @param buf
     *            The non-empty byte array of seed information.
     * @throws NullPointerException
     *             if the buffer is null.
     * @throws IllegalArgumentException
     *             if the buffer has zero length.
     */
    public MTRandom(byte[] buf) {
        super(0L);
        setSeed(buf);
    }

    /**
     * This version of the constructor initialises the class with the given integer array. All the data will be used to
     * initialise this instance.
     * 
     * @param buf
     *            The non-empty integer array of seed information.
     * @throws NullPointerException
     *             if the buffer is null.
     * @throws IllegalArgumentException
     *             if the buffer has zero length.
     */
    public MTRandom(int[] buf) {
        super(0L);
        setSeed(buf);
    }

    // Initializes mt[N] with a simple integer seed. This method is
    // required as part of the Mersenne Twister algorithm but need
    // not be made public.
    /**
     * @param seed
     * 
     */
    private void setSeed(int seed) {

        // Annoying runtime check for initialisation of internal data
        // caused by java.util.Random invoking setSeed() during init.
        // This is unavoidable because no fields in our instance will
        // have been initialised at this point, not even if the code
        // were placed at the declaration of the member variable.
        if (mt == null)
            mt = new int[N];

        // ---- Begin Mersenne Twister Algorithm ----
        mt[0] = seed;
        for (mti = 1; mti < N; mti++) {
            mt[mti] = (MAGIC_FACTOR1 * (mt[mti - 1] ^ (mt[mti - 1] >>> 30)) + mti);
        }
        // ---- End Mersenne Twister Algorithm ----
    }

    /**
     * This method resets the state of this instance using the 64 bits of seed data provided. Note that if the same seed
     * data is passed to two different instances of MTRandom (both of which share the same compatibility state) then the
     * sequence of numbers generated by both instances will be identical.
     * <p/>
     * If this instance was initialised in 'compatibility' mode then this method will only use the lower 32 bits of any
     * seed value passed in and will match the behaviour of the original C code exactly with respect to state
     * initialisation.
     * 
     * @param seed
     *            The 64 bit value used to initialise the random number generator state.
     */
    @Override
    public final synchronized void setSeed(long seed) {
        if (compat) {
            setSeed((int) seed);
        } else {

            // Annoying runtime check for initialisation of internal data
            // caused by java.util.Random invoking setSeed() during init.
            // This is unavoidable because no fields in our instance will
            // have been initialised at this point, not even if the code
            // were placed at the declaration of the member variable.
            if (ibuf == null)
                ibuf = new int[2];

            ibuf[0] = (int) seed;
            ibuf[1] = (int) (seed >>> 32);
            setSeed(ibuf);
        }
    }

    /**
     * This method resets the state of this instance using the byte array of seed data provided. Note that calling this
     * method is equivalent to calling "setSeed(pack(buf))" and in particular will result in a new integer array being
     * generated during the call. If you wish to retain this seed data to allow the pseudo random sequence to be
     * restarted then it would be more efficient to use the "pack()" method to convert it into an integer array first
     * and then use that to re-seed the instance. The behaviour of the class will be the same in both cases but it will
     * be more efficient.
     * 
     * @param buf
     *            The non-empty byte array of seed information.
     * @throws NullPointerException
     *             if the buffer is null.
     * @throws IllegalArgumentException
     *             if the buffer has zero length.
     */
    public final void setSeed(byte[] buf) {
        setSeed(pack(buf));
    }

    /**
     * This method resets the state of this instance using the integer array of seed data provided. This is the
     * canonical way of resetting the pseudo random number sequence.
     * 
     * @param buf
     *            The non-empty integer array of seed information.
     * @throws NullPointerException
     *             if the buffer is null.
     * @throws IllegalArgumentException
     *             if the buffer has zero length.
     */
    public final synchronized void setSeed(int[] buf) {
        int length = buf.length;
        if (length == 0)
            throw new IllegalArgumentException("Seed buffer may not be empty");
        // ---- Begin Mersenne Twister Algorithm ----
        int i = 1, j = 0, k = (N > length ? N : length);
        setSeed(MAGIC_SEED);
        for (; k > 0; k--) {
            mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * MAGIC_FACTOR2)) + buf[j] + j;
            i++;
            j++;
            if (i >= N) {
                mt[0] = mt[N - 1];
                i = 1;
            }
            if (j >= length)
                j = 0;
        }
        for (k = N - 1; k > 0; k--) {
            mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * MAGIC_FACTOR3)) - i;
            i++;
            if (i >= N) {
                mt[0] = mt[N - 1];
                i = 1;
            }
        }
        mt[0] = UPPER_MASK; // MSB is 1; assuring non-zero initial array
        // ---- End Mersenne Twister Algorithm ----
    }

    /**
     * This method forms the basis for generating a pseudo random number sequence from this class. If given a value of
     * 32, this method behaves identically to the genrand_int32 function in the original C code and ensures that using
     * the standard nextInt() function (inherited from Random) we are able to replicate behaviour exactly.
     * <p/>
     * Note that where the number of bits requested is not equal to 32 then bits will simply be masked out from the top
     * of the returned integer value. That is to say that:
     * <p/>
     * 
     * <pre>
     * mt.setSeed(12345);
     * int foo = mt.nextInt(16) + (mt.nextInt(16) &lt;&lt; 16);
     * </pre>
     * 
     * <p/>
     * will not give the same result as
     * <p/>
     * 
     * <pre>
     * mt.setSeed(12345);
     * int foo = mt.nextInt(32);
     * </pre>
     * 
     * @param bits
     *            The number of significant bits desired in the output.
     * @return The next value in the pseudo random sequence with the specified number of bits in the lower part of the
     *         integer.
     */
    @Override
    protected final synchronized int next(int bits) {
        // ---- Begin Mersenne Twister Algorithm ----
        int y, kk;
        if (mti >= N) { // generate N words at one time

            // In the original C implementation, mti is checked here
            // to determine if initialisation has occurred; if not
            // it initialises this instance with DEFAULT_SEED (5489).
            // This is no longer necessary as initialisation of the
            // Java instance must result in initialisation occurring
            // Use the constructor MTRandom(true) to enable backwards
            // compatible behaviour.

            for (kk = 0; kk < N - M; kk++) {
                y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
                mt[kk] = mt[kk + M] ^ (y >>> 1) ^ MAGIC[y & 0x1];
            }
            for (; kk < N - 1; kk++) {
                y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
                mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ MAGIC[y & 0x1];
            }
            y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
            mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ MAGIC[y & 0x1];

            mti = 0;
        }

        y = mt[mti++];

        // Tempering
        y ^= (y >>> 11);
        y ^= (y << 7) & MAGIC_MASK1;
        y ^= (y << 15) & MAGIC_MASK2;
        y ^= (y >>> 18);
        // ---- End Mersenne Twister Algorithm ----
        return (y >>> (32 - bits));
    }

    // This is a fairly obscure little code section to pack a
    // byte[] into an int[] in little endian ordering.

    /**
     * This simply utility method can be used in cases where a byte array of seed data is to be used to repeatedly
     * re-seed the random number sequence. By packing the byte array into an integer array first, using this method, and
     * then invoking setSeed() with that; it removes the need to re-pack the byte array each time setSeed() is called.
     * <p/>
     * If the length of the byte array is not a multiple of 4 then it is implicitly padded with zeros as necessary. For
     * example:
     * <p/>
     * 
     * <pre>
     *     byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }
     * </pre>
     * 
     * <p/>
     * becomes
     * <p/>
     * 
     * <pre>
     *     int[]  { 0x04030201, 0x00000605 }
     * </pre>
     * 
     * <p/>
     * <p/>
     * Note that this method will not complain if the given byte array is empty and will produce an empty integer array,
     * but the setSeed() method will throw an exception if the empty integer array is passed to it.
     * 
     * @param buf
     *            The non-null byte array to be packed.
     * @return A non-null integer array of the packed bytes.
     * @throws NullPointerException
     *             if the given byte array is null.
     */
    public static int[] pack(byte[] buf) {
        int k, blen = buf.length, ilen = ((buf.length + 3) >>> 2);
        int[] ibuf = new int[ilen];
        for (int n = 0; n < ilen; n++) {
            int m = (n + 1) << 2;
            if (m > blen)
                m = blen;
            for (k = buf[--m] & 0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m] & 0xff)
                ;
            ibuf[n] = k;
        }
        return ibuf;
    }
}