Java tutorial
import java.util.Arrays; /** * <p>Static methods for doing useful math</p><hr> * * @author : $Author: brian $ * @version : $Revision: 1.1 $ * * <hr><p><font size="-1" color="#336699"><a href="http://www.mbari.org"> * The Monterey Bay Aquarium Research Institute (MBARI)</a> provides this * documentation and code "as is", with no warranty, express or * implied, of its quality or consistency. It is provided without support and * without obligation on the part of MBARI to assist in its use, correction, * modification, or enhancement. This information should not be published or * distributed to third parties without specific written permission from * MBARI.</font></p><br> * * <font size="-1" color="#336699">Copyright 2002 MBARI.<br> * MBARI Proprietary Information. All rights reserved.</font><br><hr><br> * */ public class Util { /** * Find the index of the array nearest to the value. The values array can * contain only unique values. If it doesn't the first occurence of a value * in the values array is the one used, subsequent duplicate are ignored. If * the value falls outside the bounds of the array, <b>null</b> is returned * * @param array Values to search through for the nearest point * @param value THe value to search for the nearest neighbor in the array * @return The index of the array value nearest the value. null if the value * is larger or smaller than any values in the array. */ public static Integer nearInclusive(final double[] array, final double value) { Integer i = null; int idx = binarySearch(array, value); if (idx < 0) { idx = -(idx) - 1; if (idx == 0 || idx >= array.length) { // Do nothing. This point is outside the array bounds return value will be null } else { // Find nearest point double d0 = Math.abs(array[idx - 1] - value); double d1 = Math.abs(array[idx] - value); i = (d0 <= d1) ? idx - 1 : idx; } } else { i = idx; } return i; } /** * Searches the specified array of doubles for the specified value using * the binary search algorithm. The array <strong>must</strong> be sorted * (as by the <tt>sort</tt> method, above) prior to making this call. If * it is not sorted, the results are undefined. If the array contains * multiple elements with the specified value, there is no guarantee which * one will be found. The array can be sorted from low values to high or * from high values to low. * * @param a the array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt>, if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. */ public static int binarySearch(double[] a, double key) { int index = -1; if (a[0] < a[1]) { index = Arrays.binarySearch(a, key); } else { index = binarySearch(a, key, 0, a.length - 1); } return index; } private static int binarySearch(double[] a, double key, int low, int high) { while (low <= high) { int mid = (low + high) / 2; double midVal = a[mid]; int cmp; if (midVal > key) { cmp = -1; // Neither val is NaN, thisVal is smaller } else if (midVal < key) { cmp = 1; // Neither val is NaN, thisVal is larger } else { long midBits = Double.doubleToLongBits(midVal); long keyBits = Double.doubleToLongBits(key); cmp = (midBits == keyBits ? 0 : (midBits < keyBits ? -1 : 1)); // (0.0, -0.0) or (NaN, !NaN) } if (cmp < 0) { low = mid + 1; } else if (cmp > 0) { high = mid - 1; } else { return mid; // key found } } return -(low + 1); // key not found. } }