SoftHashMap.java Source code

Java tutorial

Introduction

Here is the source code for SoftHashMap.java

Source

/*
 * Copyright 2006 (C) TJDO.
 * All rights reserved.
 *
 * This software is distributed under the terms of the TJDO License version 1.0.
 * See the terms of the TJDO License in the documentation provided with this software.
 *
 * $Id: SoftHashMap.java,v 1.2 2007/10/03 01:23:43 jackknifebarber Exp $
 */

import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

/**
 * A hashtable-based <tt>Map</tt> implementation with <em>soft keys</em>.
 * An entry in a <tt>SoftHashMap</tt> will automatically be removed when
 * its key is no longer in ordinary use.
 * More precisely, the presence of a mapping for a given key will not prevent
 * the key from being discarded by the garbage collector, that is, made
 * finalizable, finalized, and then reclaimed.
 * When a key has been discarded its entry is effectively removed from the map,
 * so this class behaves somewhat differently than other <tt>Map</tt>
 * implementations.
 * <p>
 * Both null values and the null key are supported. This class has performance
 * characteristics similar to those of the <tt>HashMap</tt> class, and has the
 * same efficiency parameters of <em>initial capacity</em> and <em>load
 * factor</em>.
 * <p>
 * Like most collection classes, this class is not synchronized.
 * A synchronized <tt>SoftHashMap</tt> may be constructed using the
 * <tt>Collections.synchronizedMap</tt> method.
 * <p>
 * This class is intended primarily for use with key objects whose
 * <tt>equals</tt> methods test for object identity using the <tt>==</tt>
 * operator.
 * Once such a key is discarded it can never be recreated, so it is impossible
 * to do a lookup of that key in a <tt>SoftHashMap</tt> at some later time and
 * be surprised that its entry has been removed.
 * This class will work perfectly well with key objects whose <tt>equals</tt>
 * methods are not based upon object identity, such as <tt>String</tt>
 * instances.
 * With such recreatable key objects, however, the automatic removal of
 * <tt>SoftHashMap</tt> entries whose keys have been discarded may prove to be
 * confusing.
 * <p>
 * The behavior of the <tt>SoftHashMap</tt> class depends in part upon the
 * actions of the garbage collector, so several familiar (though not required)
 * <tt>Map</tt> invariants do not hold for this class.
 * Because the garbage collector may discard keys at any time, a
 * <tt>SoftHashMap</tt> may behave as though an unknown thread is silently
 * removing entries.s
 * In particular, even if you synchronize on a <tt>SoftHashMap</tt> instance and
 * invoke none of its mutator methods, it is possible for the <tt>size</tt>
 * method to return smaller values over time, for the <tt>isEmpty</tt> method to
 * return <tt>false</tt> and then <tt>true</tt>, for the <tt>containsKey</tt>
 * method to return <tt>true</tt> and later <tt>false</tt> for a given key, for
 * the <tt>get</tt> method to return a value for a given key but later return
 * <tt>null</tt>, for the <tt>put</tt> method to return <tt>null</tt> and the
 * <tt>remove</tt> method to return <tt>false</tt> for a key that previously
 * appeared to be in the map, and for successive examinations of the key set,
 * the value set, and the entry set to yield successively smaller numbers of
 * elements.
 * <p>
 * Each key object in a <tt>SoftHashMap</tt> is stored indirectly as the
 * referent of a soft reference.
 * Therefore a key will automatically be removed only after the soft references
 * to it, both inside and outside of the map, have been cleared by the garbage
 * collector.
 * <p>
 * <strong>Implementation note:</strong> The value objects in a
 * <tt>SoftHashMap</tt> are held by ordinary strong references.
 * Thus care should be taken to ensure that value objects do not strongly refer
 * to their own keys, either directly or indirectly, since that will prevent the
 * keys from being discarded.
 * Note that a value object may refer indirectly to its key via the
 * <tt>SoftHashMap</tt> itself; that is, a value object may strongly refer to
 * some other key object whose associated value object, in turn, strongly refers
 * to the key of the first value object.
 * One way to deal with this is to wrap values themselves within
 * <tt>SoftReferences</tt> before inserting, as in: <tt>m.put(key, new
 * SoftReference(value))</tt>, and then unwrapping upon each <tt>get</tt>.
 * <p>
 * The iterators returned by all of this class's "collection view methods" are
 * <i>fail-fast</i>: if the map is structurally modified at any time after the
 * iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> or <tt>add</tt> methods, the iterator will throw a
 * <tt>ConcurrentModificationException</tt>.
 * Thus, in the face of concurrent modification, the iterator fails quickly and
 * cleanly, rather than risking arbitrary, non-deterministic behavior at an
 * undetermined time in the future.
 * <p>
 * Note that the fail-fast behavior of an iterator cannot be guaranteed as it
 * is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.
 * Fail-fast iterators throw <tt>ConcurrentModificationException</tt> on a
 * best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness:  <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 * @author  <a href="mailto:jackknifebarber@users.sourceforge.net">Mike Martin</a>
 *          (borrowing liberally from java.util.WeakHashMap)
 * @version $Revision: 1.2 $
 */

public class SoftHashMap extends AbstractMap implements Map {
    /**
     * The default initial capacity -- MUST be a power of two.
     */
    private static final int DEFAULT_INITIAL_CAPACITY = 16;

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two &lt;= 1&lt;&lt;30.
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load fast used when none specified in constructor.
     */
    private static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The table, resized as necessary. Length MUST Always be a power of two.
     */
    private Entry[] table;

    /**
     * The number of key-value mappings contained in this soft hash map.
     */
    private int size;

    /**
     * The next size value at which to resize (capacity * load factor).
     */
    private int threshold;

    /**
     * The load factor for the hash table.
     */
    private final float loadFactor;

    /**
     * Reference queue for cleared SoftEntries.
     */
    private final ReferenceQueue queue = new ReferenceQueue();

    /**
     * The number of times this map has been structurally modified.
     * Structural modifications are those that change the number of mappings or
     * otherwise modify its internal structure (e.g., rehash).
     * This field is used to make iterators on Collection-views of the map
     * fail-fast.
     * (See ConcurrentModificationException).
     */
    private volatile int modCount;

    /**
     * Constructs a new, empty <tt>SoftHashMap</tt> with the given initial
     * capacity and the given load factor.
     *
     * @param initialCapacity
     *      The initial capacity of the <tt>SoftHashMap</tt>
     * @param loadFactor
     *      The load factor of the <tt>SoftHashMap</tt>
     * @throws IllegalArgumentException
     *      If the initial capacity is negative, or if the load factor is
     *      nonpositive.
     */
    public SoftHashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Initial Capacity: " + initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load factor: " + loadFactor);

        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;
        table = new Entry[capacity];
        this.loadFactor = loadFactor;
        threshold = (int) (capacity * loadFactor);
    }

    /**
     * Constructs a new, empty <tt>SoftHashMap</tt> with the given initial
     * capacity and the default load factor, which is <tt>0.75</tt>.
     *
     * @param  initialCapacity
     *      The initial capacity of the <tt>SoftHashMap</tt>
     * @throws IllegalArgumentException
     *      If the initial capacity is negative.
     */
    public SoftHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs a new, empty <tt>SoftHashMap</tt> with the default initial
     * capacity (16) and the default load factor (0.75).
     */
    public SoftHashMap() {
        loadFactor = DEFAULT_LOAD_FACTOR;
        threshold = DEFAULT_INITIAL_CAPACITY;
        table = new Entry[DEFAULT_INITIAL_CAPACITY];
    }

    /**
     * Constructs a new <tt>SoftHashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.
     * The <tt>SoftHashMap</tt> is created with default load factor, which is
     * <tt>0.75</tt> and an initial capacity sufficient to hold the mappings
     * in the specified <tt>Map</tt>.
     *
     * @param t
     *      the map whose mappings are to be placed in this map.
     * @throws NullPointerException
     *      if the specified map is null.
     */
    public SoftHashMap(Map t) {
        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1, 16), DEFAULT_LOAD_FACTOR);

        putAll(t);
    }

    // internal utilities

    /**
     * Value representing null keys inside tables.
     */
    private static final Object NULL_KEY = new Object();

    /**
     * Use NULL_KEY for key if it is null.
     */
    private static Object maskNull(Object key) {
        return key == null ? NULL_KEY : key;
    }

    /**
     * Return internal representation of null key back to caller as null
     */
    private static Object unmaskNull(Object key) {
        return key == NULL_KEY ? null : key;
    }

    /**
     * Returns a hash value for the specified object.
     * In addition to the object's own hashCode, this method applies a
     * "supplemental hash function," which defends against poor quality hash
     * functions.
     * This is critical because HashMap uses power-of two length hash tables.
     * <p>
     * The shift distances in this function were chosen as the result of an
     * automated search over the entire four-dimensional search space.
     */
    static int hash(Object x) {
        int h = x.hashCode();

        h += ~(h << 9);
        h ^= (h >>> 14);
        h += (h << 4);
        h ^= (h >>> 10);

        return h;
    }

    /**
     * Check for equality of non-null reference x and possibly-null y.
     * By default uses Object.equals.
     */
    static boolean eq(Object x, Object y) {
        return x == y || x.equals(y);
    }

    /**
     * Return index for hash code h.
     */
    static int indexFor(int h, int length) {
        return h & (length - 1);
    }

    /**
     * Expunge stale entries from the table.
     */
    private void expungeStaleEntries() {
        Object r;

        while ((r = queue.poll()) != null) {
            Entry e = (Entry) r;
            int h = e.hash;
            int i = indexFor(h, table.length);

            Entry prev = table[i];
            Entry p = prev;

            while (p != null) {
                Entry next = p.next;

                if (p == e) {
                    if (prev == e)
                        table[i] = next;
                    else
                        prev.next = next;

                    e.next = null; // Help GC
                    e.value = null; //  "   "
                    size--;
                    break;
                }

                prev = p;
                p = next;
            }
        }
    }

    /**
     * Return the table after first expunging stale entries
     */
    private Entry[] getTable() {
        expungeStaleEntries();
        return table;
    }

    /**
     * Returns the number of key-value mappings in this map.
     * This result is a snapshot, and may not reflect unprocessed entries that
     * will be removed before next attempted access because they are no longer
     * referenced.
     */
    public int size() {
        if (size == 0)
            return 0;

        expungeStaleEntries();
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     * This result is a snapshot, and may not reflect unprocessed entries that
     * will be removed before next attempted access because they are no longer
     * referenced.
     */
    public boolean isEmpty() {
        return size() == 0;
    }

    /**
     * Returns the value to which the specified key is mapped in this soft hash
     * map, or <tt>null</tt> if the map contains no mapping for this key.
     * A return value of <tt>null</tt> does not <i>necessarily</i> indicate that
     * the map contains no mapping for the key; it is also possible that the map
     * explicitly maps the key to <tt>null</tt>.
     * The <tt>containsKey</tt> method may be used to distinguish these two
     * cases.
     *
     * @param key
     *      the key whose associated value is to be returned.
     * @return
     *      the value to which this map maps the specified key, or <tt>null</tt>
     *      if the map contains no mapping for this key.
     *
     * @see #put(Object, Object)
     */
    public Object get(Object key) {
        Object k = maskNull(key);
        int h = hash(k);
        Entry[] tab = getTable();
        int index = indexFor(h, tab.length);
        Entry e = tab[index];

        while (e != null) {
            if (e.hash == h && eq(k, e.get()))
                return e.value;

            e = e.next;
        }

        return null;
    }

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the specified
     * key.
     *
     * @param key
     *      The key whose presence in this map is to be tested
     * @return
     *      <tt>true</tt> if there is a mapping for <tt>key</tt>;
     *      <tt>false</tt> otherwise
     */
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    /**
     * Returns the entry associated with the specified key in the map.
     * Returns null if the map contains no mapping for this key.
     */
    Entry getEntry(Object key) {
        Object k = maskNull(key);
        int h = hash(k);
        Entry[] tab = getTable();
        int index = indexFor(h, tab.length);
        Entry e = tab[index];

        while (e != null && !(e.hash == h && eq(k, e.get())))
            e = e.next;

        return e;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for this key, the old value is
     * replaced.
     *
     * @param key
     *      key with which the specified value is to be associated.
     * @param value
     *      value to be associated with the specified key.
     * @return
     *      previous value associated with specified key, or <tt>null</tt> if
     *      there was no mapping for key.  A <tt>null</tt> return can also
     *      indicate that the map previously associated <tt>null</tt> with the
     *      specified key.
     */
    public Object put(Object key, Object value) {
        Object k = maskNull(key);
        int h = hash(k);
        Entry[] tab = getTable();
        int i = indexFor(h, tab.length);

        for (Entry e = tab[i]; e != null; e = e.next) {
            if (h == e.hash && eq(k, e.get())) {
                Object oldValue = e.value;
                if (value != oldValue)
                    e.value = value;
                return oldValue;
            }
        }

        modCount++;
        tab[i] = new Entry(k, value, queue, h, tab[i]);
        if (++size >= threshold)
            resize(tab.length * 2);

        return null;
    }

    /**
     * Rehashes the contents of this map into a new array with a
     * larger capacity.
     * This method is called automatically when the number of keys in this map
     * reaches its threshold.
     * <p>
     * If current capacity is MAXIMUM_CAPACITY, this method does not resize the
     * map, but but sets threshold to Integer.MAX_VALUE.
     * This has the effect of preventing future calls.
     *
     * @param newCapacity
     *      the new capacity, MUST be a power of two; must be greater than
     *      current capacity unless current capacity is MAXIMUM_CAPACITY (in
     *      which case value is irrelevant).
     */
    void resize(int newCapacity) {
        Entry[] oldTable = getTable();
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        Entry[] newTable = new Entry[newCapacity];
        transfer(oldTable, newTable);
        table = newTable;

        /*
         * If ignoring null elements and processing ref queue caused massive
         * shrinkage, then restore old table.  This should be rare, but avoids
         * unbounded expansion of garbage-filled tables.
         */
        if (size >= threshold / 2)
            threshold = (int) (newCapacity * loadFactor);
        else {
            expungeStaleEntries();
            transfer(newTable, oldTable);
            table = oldTable;
        }
    }

    /** Transfer all entries from src to dest tables. */
    private void transfer(Entry[] src, Entry[] dest) {
        for (int j = 0; j < src.length; ++j) {
            Entry e = src[j];
            src[j] = null;

            while (e != null) {
                Entry next = e.next;
                Object key = e.get();

                if (key == null) {
                    e.next = null; // Help GC
                    e.value = null; //  "   "
                    size--;
                } else {
                    int i = indexFor(e.hash, dest.length);
                    e.next = dest[i];
                    dest[i] = e;
                }

                e = next;
            }
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for any of the
     * keys currently in the specified map.
     *
     * @param m
     *      mappings to be stored in this map.
     * @throws NullPointerException
     *      if the specified map is null.
     */
    public void putAll(Map m) {
        int numKeysToBeAdded = m.size();
        if (numKeysToBeAdded == 0)
            return;

        /*
         * Expand the map if the map if the number of mappings to be added
         * is greater than or equal to threshold.  This is conservative; the
         * obvious condition is (m.size() + size) >= threshold, but this
         * condition could result in a map with twice the appropriate capacity,
         * if the keys to be added overlap with the keys already in this map.
         * By using the conservative calculation, we subject ourself
         * to at most one extra resize.
         */
        if (numKeysToBeAdded > threshold) {
            int targetCapacity = (int) (numKeysToBeAdded / loadFactor + 1);
            if (targetCapacity > MAXIMUM_CAPACITY)
                targetCapacity = MAXIMUM_CAPACITY;
            int newCapacity = table.length;
            while (newCapacity < targetCapacity)
                newCapacity <<= 1;
            if (newCapacity > table.length)
                resize(newCapacity);
        }

        for (Iterator i = m.entrySet().iterator(); i.hasNext();) {
            Map.Entry e = (Map.Entry) i.next();
            put(e.getKey(), e.getValue());
        }
    }

    /**
     * Removes the mapping for this key from this map if present.
     *
     * @param key
     *      key whose mapping is to be removed from the map.
     * @return
     *      previous value associated with specified key, or <tt>null</tt> if
     *      there was no mapping for key.  A <tt>null</tt> return can also
     *      indicate that the map previously associated <tt>null</tt> with the
     *      specified key.
     */
    public Object remove(Object key) {
        Object k = maskNull(key);
        int h = hash(k);
        Entry[] tab = getTable();
        int i = indexFor(h, tab.length);
        Entry prev = tab[i];
        Entry e = prev;

        while (e != null) {
            Entry next = e.next;

            if (h == e.hash && eq(k, e.get())) {
                modCount++;
                size--;

                if (prev == e)
                    tab[i] = next;
                else
                    prev.next = next;

                return e.value;
            }

            prev = e;
            e = next;
        }

        return null;
    }

    /** Special version of remove needed by Entry set. */
    Entry removeMapping(Object o) {
        if (!(o instanceof Map.Entry))
            return null;

        Entry[] tab = getTable();
        Map.Entry entry = (Map.Entry) o;
        Object k = maskNull(entry.getKey());
        int h = hash(k);
        int i = indexFor(h, tab.length);
        Entry prev = tab[i];
        Entry e = prev;

        while (e != null) {
            Entry next = e.next;

            if (h == e.hash && e.equals(entry)) {
                modCount++;
                size--;

                if (prev == e)
                    tab[i] = next;
                else
                    prev.next = next;

                return e;
            }

            prev = e;
            e = next;
        }

        return null;
    }

    /**
     * Removes all mappings from this map.
     */
    public void clear() {
        /*
         * Clear out ref queue. We don't need to expunge entries since table
         * is getting cleared.
         */
        while (queue.poll() != null)
            ;

        modCount++;
        Entry tab[] = table;
        for (int i = 0; i < tab.length; ++i)
            tab[i] = null;
        size = 0;

        /*
         * Allocation of array may have caused GC, which may have caused
         * additional entries to go stale.  Removing these entries from the
         * reference queue will make them eligible for reclamation.
         */
        while (queue.poll() != null)
            ;
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the specified
     * value.
     *
     * @param value
     *      value whose presence in this map is to be tested.
     * @return
     *      <tt>true</tt> if this map maps one or more keys to the specified
     *      value.
     */
    public boolean containsValue(Object value) {
        if (value == null)
            return containsNullValue();

        Entry tab[] = getTable();
        for (int i = tab.length; i-- > 0;) {
            for (Entry e = tab[i]; e != null; e = e.next) {
                if (value.equals(e.value))
                    return true;
            }
        }

        return false;
    }

    /**
     * Special-case code for containsValue with null argument.
     */
    private boolean containsNullValue() {
        Entry tab[] = getTable();
        for (int i = tab.length; i-- > 0;) {
            for (Entry e = tab[i]; e != null; e = e.next) {
                if (e.value == null)
                    return true;
            }
        }

        return false;
    }

    /**
     * The entries in this hash table extend SoftReference, using its main ref
     * field as the key.
     */
    private static class Entry extends SoftReference implements Map.Entry {
        private Object value;
        private final int hash;
        private Entry next;

        /**
         * Create new entry.
         */
        Entry(Object key, Object value, ReferenceQueue queue, int hash, Entry next) {
            super(key, queue);

            this.value = value;
            this.hash = hash;
            this.next = next;
        }

        public Object getKey() {
            return unmaskNull(get());
        }

        public Object getValue() {
            return value;
        }

        public Object setValue(Object newValue) {
            Object oldValue = value;
            value = newValue;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;

            Map.Entry e = (Map.Entry) o;
            Object k1 = getKey();
            Object k2 = e.getKey();

            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();

                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }

            return false;
        }

        public int hashCode() {
            Object k = getKey();
            Object v = getValue();

            return ((k == null ? 0 : k.hashCode()) ^ (v == null ? 0 : v.hashCode()));
        }

        public String toString() {
            return getKey() + "=" + getValue();
        }
    }

    private abstract class HashIterator implements Iterator {
        int index;
        Entry entry = null;
        Entry lastReturned = null;
        int expectedModCount = modCount;

        /**
         * Strong reference needed to avoid disappearance of key
         * between hasNext and next
         */
        Object nextKey = null;

        /**
         * Strong reference needed to avoid disappearance of key
         * between nextEntry() and any use of the entry
         */
        Object currentKey = null;

        HashIterator() {
            index = (size() != 0 ? table.length : 0);
        }

        public boolean hasNext() {
            Entry[] t = table;

            while (nextKey == null) {
                Entry e = entry;
                int i = index;
                while (e == null && i > 0)
                    e = t[--i];
                entry = e;
                index = i;
                if (e == null) {
                    currentKey = null;
                    return false;
                }
                nextKey = e.get(); // hold on to key in strong ref
                if (nextKey == null)
                    entry = entry.next;
            }
            return true;
        }

        /** The common parts of next() across different types of iterators */
        protected Entry nextEntry() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (nextKey == null && !hasNext())
                throw new NoSuchElementException();

            lastReturned = entry;
            entry = entry.next;
            currentKey = nextKey;
            nextKey = null;
            return lastReturned;
        }

        public void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            SoftHashMap.this.remove(currentKey);
            expectedModCount = modCount;
            lastReturned = null;
            currentKey = null;
        }
    }

    private class ValueIterator extends HashIterator {
        public Object next() {
            return nextEntry().value;
        }
    }

    private class KeyIterator extends HashIterator {
        public Object next() {
            return nextEntry().getKey();
        }
    }

    private class EntryIterator extends HashIterator {
        public Object next() {
            return nextEntry();
        }
    }

    // Views

    private transient Set keySet = null;
    private transient Collection values = null;
    private transient Set entrySet = null;

    /**
     * Returns a set view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are reflected in the
     * set, and vice-versa.
     * The set supports element removal, which removes the corresponding mapping
     * from this map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * @return
     *      a set view of the keys contained in this map.
     */
    public Set keySet() {
        Set ks = keySet;
        return (ks != null ? ks : (keySet = new KeySet()));
    }

    private class KeySet extends AbstractSet {
        public Iterator iterator() {
            return new KeyIterator();
        }

        public int size() {
            return SoftHashMap.this.size();
        }

        public boolean contains(Object o) {
            return containsKey(o);
        }

        public boolean remove(Object o) {
            if (containsKey(o)) {
                SoftHashMap.this.remove(o);
                return true;
            } else
                return false;
        }

        public void clear() {
            SoftHashMap.this.clear();
        }

        public Object[] toArray() {
            Collection c = new ArrayList(size());
            for (Iterator i = iterator(); i.hasNext();)
                c.add(i.next());
            return c.toArray();
        }

        public Object[] toArray(Object a[]) {
            Collection c = new ArrayList(size());
            for (Iterator i = iterator(); i.hasNext();)
                c.add(i.next());
            return c.toArray(a);
        }
    }

    /**
     * Returns a collection view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are reflected
     * in the collection, and vice-versa.
     * The collection supports element removal, which removes the corresponding
     * mapping from this map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
     * <tt>clear</tt> operations.
     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * @return
     *      a collection view of the values contained in this map.
     */
    public Collection values() {
        Collection vs = values;
        return (vs != null ? vs : (values = new Values()));
    }

    private class Values extends AbstractCollection {
        public Iterator iterator() {
            return new ValueIterator();
        }

        public int size() {
            return SoftHashMap.this.size();
        }

        public boolean contains(Object o) {
            return containsValue(o);
        }

        public void clear() {
            SoftHashMap.this.clear();
        }

        public Object[] toArray() {
            Collection c = new ArrayList(size());
            for (Iterator i = iterator(); i.hasNext();)
                c.add(i.next());
            return c.toArray();
        }

        public Object[] toArray(Object a[]) {
            Collection c = new ArrayList(size());
            for (Iterator i = iterator(); i.hasNext();)
                c.add(i.next());
            return c.toArray(a);
        }
    }

    /**
     * Returns a collection view of the mappings contained in this map.
     * Each element in the returned collection is a <tt>Map.Entry</tt>.
     * The collection is backed by the map, so changes to the map are reflected
     * in the collection, and vice-versa.
     * The collection supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
     * <tt>clear</tt> operations.
     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * @return
     *      a collection view of the mappings contained in this map.
     */
    public Set entrySet() {
        Set es = entrySet;
        return (es != null ? es : (entrySet = new EntrySet()));
    }

    private class EntrySet extends AbstractSet {
        public Iterator iterator() {
            return new EntryIterator();
        }

        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry) o;
            Entry candidate = getEntry(e.getKey());
            return candidate != null && candidate.equals(e);
        }

        public boolean remove(Object o) {
            return removeMapping(o) != null;
        }

        public int size() {
            return SoftHashMap.this.size();
        }

        public void clear() {
            SoftHashMap.this.clear();
        }

        public Object[] toArray() {
            Collection c = new ArrayList(size());
            for (Iterator i = iterator(); i.hasNext();)
                c.add(new SimpleEntry((Map.Entry) i.next()));
            return c.toArray();
        }

        public Object[] toArray(Object a[]) {
            Collection c = new ArrayList(size());
            for (Iterator i = iterator(); i.hasNext();)
                c.add(new SimpleEntry((Map.Entry) i.next()));
            return c.toArray(a);
        }
    }

    static class SimpleEntry implements Map.Entry {
        private Object key;
        private Object value;

        public SimpleEntry(Map.Entry e) {
            this.key = e.getKey();
            this.value = e.getValue();
        }

        public Object getKey() {
            return key;
        }

        public Object getValue() {
            return value;
        }

        public Object setValue(Object value) {
            Object oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;

            Map.Entry e = (Map.Entry) o;
            return eq(key, e.getKey()) && eq(value, e.getValue());
        }

        public int hashCode() {
            return ((key == null) ? 0 : key.hashCode()) ^ ((value == null) ? 0 : value.hashCode());
        }

        public String toString() {
            return key + "=" + value;
        }

        private static boolean eq(Object o1, Object o2) {
            return o1 == null ? o2 == null : o1.equals(o2);
        }
    }
}