ConcurrentDoublyLinkedList.java Source code

Java tutorial

Introduction

Here is the source code for ConcurrentDoublyLinkedList.java

Source

/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

import java.util.AbstractCollection;
import java.util.ArrayList;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Deque;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.concurrent.atomic.AtomicReference;

/**
 * A concurrent linked-list implementation of a {@link Deque} (double-ended
 * queue). Concurrent insertion, removal, and access operations execute safely
 * across multiple threads. Iterators are <i>weakly consistent</i>, returning
 * elements reflecting the state of the deque at some point at or since the
 * creation of the iterator. They do <em>not</em> throw {@link
 * ConcurrentModificationException}, and may proceed concurrently with other
 * operations.
 * 
 * <p>
 * This class and its iterators implement all of the <em>optional</em> methods
 * of the {@link Collection} and {@link Iterator} interfaces. Like most other
 * concurrent collection implementations, this class does not permit the use of
 * <tt>null</tt> elements. because some null arguments and return values
 * cannot be reliably distinguished from the absence of elements. Arbitrarily,
 * the {@link Collection#remove} method is mapped to
 * <tt>removeFirstOccurrence</tt>, and {@link Collection#add} is mapped to
 * <tt>addLast</tt>.
 * 
 * <p>
 * Beware that, unlike in most collections, the <tt>size</tt> method is
 * <em>NOT</em> a constant-time operation. Because of the asynchronous nature
 * of these deques, determining the current number of elements requires a
 * traversal of the elements.
 * 
 * <p>
 * This class is <tt>Serializable</tt>, but relies on default serialization
 * mechanisms. Usually, it is a better idea for any serializable class using a
 * <tt>ConcurrentLinkedDeque</tt> to instead serialize a snapshot of the
 * elements obtained by method <tt>toArray</tt>.
 * 
 * @author Doug Lea
 * @param <E>
 *            the type of elements held in this collection
 */

public class ConcurrentDoublyLinkedList<E> extends AbstractCollection<E> implements java.io.Serializable {

    /*
     * This is an adaptation of an algorithm described in Paul Martin's "A
     * Practical Lock-Free Doubly-Linked List". Sun Labs Tech report. The basic
     * idea is to primarily rely on next-pointers to ensure consistency.
     * Prev-pointers are in part optimistic, reconstructed using forward
     * pointers as needed. The main forward list uses a variant of HM-list
     * algorithm similar to the one used in ConcurrentSkipListMap class, but a
     * little simpler. It is also basically similar to the approach in Edya
     * Ladan-Mozes and Nir Shavit "An Optimistic Approach to Lock-Free FIFO
     * Queues" in DISC04.
     * 
     * Quoting a summary in Paul Martin's tech report:
     * 
     * All cleanups work to maintain these invariants: (1) forward pointers are
     * the ground truth. (2) forward pointers to dead nodes can be improved by
     * swinging them further forward around the dead node. (2.1) forward
     * pointers are still correct when pointing to dead nodes, and forward
     * pointers from dead nodes are left as they were when the node was deleted.
     * (2.2) multiple dead nodes may point forward to the same node. (3)
     * backward pointers were correct when they were installed (3.1) backward
     * pointers are correct when pointing to any node which points forward to
     * them, but since more than one forward pointer may point to them, the live
     * one is best. (4) backward pointers that are out of date due to deletion
     * point to a deleted node, and need to point further back until they point
     * to the live node that points to their source. (5) backward pointers that
     * are out of date due to insertion point too far backwards, so shortening
     * their scope (by searching forward) fixes them. (6) backward pointers from
     * a dead node cannot be "improved" since there may be no live node pointing
     * forward to their origin. (However, it does no harm to try to improve them
     * while racing with a deletion.)
     * 
     * 
     * Notation guide for local variables n, b, f : a node, its predecessor, and
     * successor s : some other successor
     */

    // Minor convenience utilities

    /**
     * Returns true if given reference is non-null and isn't a header, trailer,
     * or marker.
     * 
     * @param n
     *            (possibly null) node
     * @return true if n exists as a user node
     */
    private static boolean usable(Node<?> n) {
        return n != null && !n.isSpecial();
    }

    /**
     * Throws NullPointerException if argument is null
     * 
     * @param v
     *            the element
     */
    private static void checkNullArg(Object v) {
        if (v == null)
            throw new NullPointerException();
    }

    /**
     * Returns element unless it is null, in which case throws
     * NoSuchElementException.
     * 
     * @param v
     *            the element
     * @return the element
     */
    private E screenNullResult(E v) {
        if (v == null)
            throw new NoSuchElementException();
        return v;
    }

    /**
     * Creates an array list and fills it with elements of this list. Used by
     * toArray.
     * 
     * @return the arrayList
     */
    private ArrayList<E> toArrayList() {
        ArrayList<E> c = new ArrayList<E>();
        for (Node<E> n = header.forward(); n != null; n = n.forward())
            c.add(n.element);
        return c;
    }

    // Fields and constructors

    private static final long serialVersionUID = 876323262645176354L;

    /**
     * List header. First usable node is at header.forward().
     */
    private final Node<E> header;

    /**
     * List trailer. Last usable node is at trailer.back().
     */
    private final Node<E> trailer;

    /**
     * Constructs an empty deque.
     */
    public ConcurrentDoublyLinkedList() {
        Node h = new Node(null, null, null);
        Node t = new Node(null, null, h);
        h.setNext(t);
        header = h;
        trailer = t;
    }

    /**
     * Constructs a deque containing the elements of the specified collection,
     * in the order they are returned by the collection's iterator.
     * 
     * @param c
     *            the collection whose elements are to be placed into this
     *            deque.
     * @throws NullPointerException
     *             if <tt>c</tt> or any element within it is <tt>null</tt>
     */
    public ConcurrentDoublyLinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

    /**
     * Prepends the given element at the beginning of this deque.
     * 
     * @param o
     *            the element to be inserted at the beginning of this deque.
     * @throws NullPointerException
     *             if the specified element is <tt>null</tt>
     */
    public void addFirst(E o) {
        checkNullArg(o);
        while (header.append(o) == null)
            ;
    }

    /**
     * Appends the given element to the end of this deque. This is identical in
     * function to the <tt>add</tt> method.
     * 
     * @param o
     *            the element to be inserted at the end of this deque.
     * @throws NullPointerException
     *             if the specified element is <tt>null</tt>
     */
    public void addLast(E o) {
        checkNullArg(o);
        while (trailer.prepend(o) == null)
            ;
    }

    /**
     * Prepends the given element at the beginning of this deque.
     * 
     * @param o
     *            the element to be inserted at the beginning of this deque.
     * @return <tt>true</tt> always
     * @throws NullPointerException
     *             if the specified element is <tt>null</tt>
     */
    public boolean offerFirst(E o) {
        addFirst(o);
        return true;
    }

    /**
     * Appends the given element to the end of this deque. (Identical in
     * function to the <tt>add</tt> method; included only for consistency.)
     * 
     * @param o
     *            the element to be inserted at the end of this deque.
     * @return <tt>true</tt> always
     * @throws NullPointerException
     *             if the specified element is <tt>null</tt>
     */
    public boolean offerLast(E o) {
        addLast(o);
        return true;
    }

    /**
     * Retrieves, but does not remove, the first element of this deque, or
     * returns null if this deque is empty.
     * 
     * @return the first element of this queue, or <tt>null</tt> if empty.
     */
    public E peekFirst() {
        Node<E> n = header.successor();
        return (n == null) ? null : n.element;
    }

    /**
     * Retrieves, but does not remove, the last element of this deque, or
     * returns null if this deque is empty.
     * 
     * @return the last element of this deque, or <tt>null</tt> if empty.
     */
    public E peekLast() {
        Node<E> n = trailer.predecessor();
        return (n == null) ? null : n.element;
    }

    /**
     * Returns the first element in this deque.
     * 
     * @return the first element in this deque.
     * @throws NoSuchElementException
     *             if this deque is empty.
     */
    public E getFirst() {
        return screenNullResult(peekFirst());
    }

    /**
     * Returns the last element in this deque.
     * 
     * @return the last element in this deque.
     * @throws NoSuchElementException
     *             if this deque is empty.
     */
    public E getLast() {
        return screenNullResult(peekLast());
    }

    /**
     * Retrieves and removes the first element of this deque, or returns null if
     * this deque is empty.
     * 
     * @return the first element of this deque, or <tt>null</tt> if empty.
     */
    public E pollFirst() {
        for (;;) {
            Node<E> n = header.successor();
            if (!usable(n))
                return null;
            if (n.delete())
                return n.element;
        }
    }

    /**
     * Retrieves and removes the last element of this deque, or returns null if
     * this deque is empty.
     * 
     * @return the last element of this deque, or <tt>null</tt> if empty.
     */
    public E pollLast() {
        for (;;) {
            Node<E> n = trailer.predecessor();
            if (!usable(n))
                return null;
            if (n.delete())
                return n.element;
        }
    }

    /**
     * Removes and returns the first element from this deque.
     * 
     * @return the first element from this deque.
     * @throws NoSuchElementException
     *             if this deque is empty.
     */
    public E removeFirst() {
        return screenNullResult(pollFirst());
    }

    /**
     * Removes and returns the last element from this deque.
     * 
     * @return the last element from this deque.
     * @throws NoSuchElementException
     *             if this deque is empty.
     */
    public E removeLast() {
        return screenNullResult(pollLast());
    }

    // *** Queue and stack methods ***
    public boolean offer(E e) {
        return offerLast(e);
    }

    public boolean add(E e) {
        return offerLast(e);
    }

    public E poll() {
        return pollFirst();
    }

    public E remove() {
        return removeFirst();
    }

    public E peek() {
        return peekFirst();
    }

    public E element() {
        return getFirst();
    }

    public void push(E e) {
        addFirst(e);
    }

    public E pop() {
        return removeFirst();
    }

    /**
     * Removes the first element <tt>e</tt> such that <tt>o.equals(e)</tt>,
     * if such an element exists in this deque. If the deque does not contain
     * the element, it is unchanged.
     * 
     * @param o
     *            element to be removed from this deque, if present.
     * @return <tt>true</tt> if the deque contained the specified element.
     * @throws NullPointerException
     *             if the specified element is <tt>null</tt>
     */
    public boolean removeFirstOccurrence(Object o) {
        checkNullArg(o);
        for (;;) {
            Node<E> n = header.forward();
            for (;;) {
                if (n == null)
                    return false;
                if (o.equals(n.element)) {
                    if (n.delete())
                        return true;
                    else
                        break; // restart if interference
                }
                n = n.forward();
            }
        }
    }

    /**
     * Removes the last element <tt>e</tt> such that <tt>o.equals(e)</tt>,
     * if such an element exists in this deque. If the deque does not contain
     * the element, it is unchanged.
     * 
     * @param o
     *            element to be removed from this deque, if present.
     * @return <tt>true</tt> if the deque contained the specified element.
     * @throws NullPointerException
     *             if the specified element is <tt>null</tt>
     */
    public boolean removeLastOccurrence(Object o) {
        checkNullArg(o);
        for (;;) {
            Node<E> s = trailer;
            for (;;) {
                Node<E> n = s.back();
                if (s.isDeleted() || (n != null && n.successor() != s))
                    break; // restart if pred link is suspect.
                if (n == null)
                    return false;
                if (o.equals(n.element)) {
                    if (n.delete())
                        return true;
                    else
                        break; // restart if interference
                }
                s = n;
            }
        }
    }

    /**
     * Returns <tt>true</tt> if this deque contains at least one element
     * <tt>e</tt> such that <tt>o.equals(e)</tt>.
     * 
     * @param o
     *            element whose presence in this deque is to be tested.
     * @return <tt>true</tt> if this deque contains the specified element.
     */
    public boolean contains(Object o) {
        if (o == null)
            return false;
        for (Node<E> n = header.forward(); n != null; n = n.forward())
            if (o.equals(n.element))
                return true;
        return false;
    }

    /**
     * Returns <tt>true</tt> if this collection contains no elements.
     * <p>
     * 
     * @return <tt>true</tt> if this collection contains no elements.
     */
    public boolean isEmpty() {
        return !usable(header.successor());
    }

    /**
     * Returns the number of elements in this deque. If this deque contains more
     * than <tt>Integer.MAX_VALUE</tt> elements, it returns
     * <tt>Integer.MAX_VALUE</tt>.
     * 
     * <p>
     * Beware that, unlike in most collections, this method is <em>NOT</em> a
     * constant-time operation. Because of the asynchronous nature of these
     * deques, determining the current number of elements requires traversing
     * them all to count them. Additionally, it is possible for the size to
     * change during execution of this method, in which case the returned result
     * will be inaccurate. Thus, this method is typically not very useful in
     * concurrent applications.
     * 
     * @return the number of elements in this deque.
     */
    public int size() {
        long count = 0;
        for (Node<E> n = header.forward(); n != null; n = n.forward())
            ++count;
        return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
    }

    /**
     * Removes the first element <tt>e</tt> such that <tt>o.equals(e)</tt>,
     * if such an element exists in this deque. If the deque does not contain
     * the element, it is unchanged.
     * 
     * @param o
     *            element to be removed from this deque, if present.
     * @return <tt>true</tt> if the deque contained the specified element.
     * @throws NullPointerException
     *             if the specified element is <tt>null</tt>
     */
    public boolean remove(Object o) {
        return removeFirstOccurrence(o);
    }

    /**
     * Appends all of the elements in the specified collection to the end of
     * this deque, in the order that they are returned by the specified
     * collection's iterator. The behavior of this operation is undefined if the
     * specified collection is modified while the operation is in progress.
     * (This implies that the behavior of this call is undefined if the
     * specified Collection is this deque, and this deque is nonempty.)
     * 
     * @param c
     *            the elements to be inserted into this deque.
     * @return <tt>true</tt> if this deque changed as a result of the call.
     * @throws NullPointerException
     *             if <tt>c</tt> or any element within it is <tt>null</tt>
     */
    public boolean addAll(Collection<? extends E> c) {
        Iterator<? extends E> it = c.iterator();
        if (!it.hasNext())
            return false;
        do {
            addLast(it.next());
        } while (it.hasNext());
        return true;
    }

    /**
     * Removes all of the elements from this deque.
     */
    public void clear() {
        while (pollFirst() != null)
            ;
    }

    /**
     * Returns an array containing all of the elements in this deque in the
     * correct order.
     * 
     * @return an array containing all of the elements in this deque in the
     *         correct order.
     */
    public Object[] toArray() {
        return toArrayList().toArray();
    }

    /**
     * Returns an array containing all of the elements in this deque in the
     * correct order; the runtime type of the returned array is that of the
     * specified array. If the deque fits in the specified array, it is returned
     * therein. Otherwise, a new array is allocated with the runtime type of the
     * specified array and the size of this deque.
     * <p>
     * 
     * If the deque fits in the specified array with room to spare (i.e., the
     * array has more elements than the deque), the element in the array
     * immediately following the end of the collection is set to null. This is
     * useful in determining the length of the deque <i>only</i> if the caller
     * knows that the deque does not contain any null elements.
     * 
     * @param a
     *            the array into which the elements of the deque are to be
     *            stored, if it is big enough; otherwise, a new array of the
     *            same runtime type is allocated for this purpose.
     * @return an array containing the elements of the deque.
     * @throws ArrayStoreException
     *             if the runtime type of a is not a supertype of the runtime
     *             type of every element in this deque.
     * @throws NullPointerException
     *             if the specified array is null.
     */
    public <T> T[] toArray(T[] a) {
        return toArrayList().toArray(a);
    }

    /**
     * Returns a weakly consistent iterator over the elements in this deque, in
     * first-to-last order. The <tt>next</tt> method returns elements
     * reflecting the state of the deque at some point at or since the creation
     * of the iterator. The method does <em>not</em> throw
     * {@link ConcurrentModificationException}, and may proceed concurrently
     * with other operations.
     * 
     * @return an iterator over the elements in this deque
     */
    public Iterator<E> iterator() {
        return new CLDIterator();
    }

    final class CLDIterator implements Iterator<E> {
        Node<E> last;

        Node<E> next = header.forward();

        public boolean hasNext() {
            return next != null;
        }

        public E next() {
            Node<E> l = last = next;
            if (l == null)
                throw new NoSuchElementException();
            next = next.forward();
            return l.element;
        }

        public void remove() {
            Node<E> l = last;
            if (l == null)
                throw new IllegalStateException();
            while (!l.delete() && !l.isDeleted())
                ;
        }
    }

}

/**
 * Linked Nodes. As a minor efficiency hack, this class opportunistically
 * inherits from AtomicReference, with the atomic ref used as the "next"
 * link.
 * 
 * Nodes are in doubly-linked lists. There are three kinds of special nodes,
 * distinguished by: * The list header has a null prev link * The list
 * trailer has a null next link * A deletion marker has a prev link pointing
 * to itself. All three kinds of special nodes have null element fields.
 * 
 * Regular nodes have non-null element, next, and prev fields. To avoid
 * visible inconsistencies when deletions overlap element replacement,
 * replacements are done by replacing the node, not just setting the
 * element.
 * 
 * Nodes can be traversed by read-only ConcurrentLinkedDeque class
 * operations just by following raw next pointers, so long as they ignore
 * any special nodes seen along the way. (This is automated in method
 * forward.) However, traversal using prev pointers is not guaranteed to see
 * all live nodes since a prev pointer of a deleted node can become
 * unrecoverably stale.
 */

class Node<E> extends AtomicReference<Node<E>> {
    private volatile Node<E> prev;

    final E element;

    /** Creates a node with given contents */
    Node(E element, Node<E> next, Node<E> prev) {
        super(next);
        this.prev = prev;
        this.element = element;
    }

    /** Creates a marker node with given successor */
    Node(Node<E> next) {
        super(next);
        this.prev = this;
        this.element = null;
    }

    /**
     * Gets next link (which is actually the value held as atomic
     * reference).
     */
    private Node<E> getNext() {
        return get();
    }

    /**
     * Sets next link
     * 
     * @param n
     *            the next node
     */
    void setNext(Node<E> n) {
        set(n);
    }

    /**
     * compareAndSet next link
     */
    private boolean casNext(Node<E> cmp, Node<E> val) {
        return compareAndSet(cmp, val);
    }

    /**
     * Gets prev link
     */
    private Node<E> getPrev() {
        return prev;
    }

    /**
     * Sets prev link
     * 
     * @param b
     *            the previous node
     */
    void setPrev(Node<E> b) {
        prev = b;
    }

    /**
     * Returns true if this is a header, trailer, or marker node
     */
    boolean isSpecial() {
        return element == null;
    }

    /**
     * Returns true if this is a trailer node
     */
    boolean isTrailer() {
        return getNext() == null;
    }

    /**
     * Returns true if this is a header node
     */
    boolean isHeader() {
        return getPrev() == null;
    }

    /**
     * Returns true if this is a marker node
     */
    boolean isMarker() {
        return getPrev() == this;
    }

    /**
     * Returns true if this node is followed by a marker, meaning that it is
     * deleted.
     * 
     * @return true if this node is deleted
     */
    boolean isDeleted() {
        Node<E> f = getNext();
        return f != null && f.isMarker();
    }

    /**
     * Returns next node, ignoring deletion marker
     */
    private Node<E> nextNonmarker() {
        Node<E> f = getNext();
        return (f == null || !f.isMarker()) ? f : f.getNext();
    }

    /**
     * Returns the next non-deleted node, swinging next pointer around any
     * encountered deleted nodes, and also patching up successor''s prev
     * link to point back to this. Returns null if this node is trailer so
     * has no successor.
     * 
     * @return successor, or null if no such
     */
    Node<E> successor() {
        Node<E> f = nextNonmarker();
        for (;;) {
            if (f == null)
                return null;
            if (!f.isDeleted()) {
                if (f.getPrev() != this && !isDeleted())
                    f.setPrev(this); // relink f's prev
                return f;
            }
            Node<E> s = f.nextNonmarker();
            if (f == getNext())
                casNext(f, s); // unlink f
            f = s;
        }
    }

    /**
     * Returns the apparent predecessor of target by searching forward for
     * it starting at this node, patching up pointers while traversing. Used
     * by predecessor().
     * 
     * @return target's predecessor, or null if not found
     */
    private Node<E> findPredecessorOf(Node<E> target) {
        Node<E> n = this;
        for (;;) {
            Node<E> f = n.successor();
            if (f == target)
                return n;
            if (f == null)
                return null;
            n = f;
        }
    }

    /**
     * Returns the previous non-deleted node, patching up pointers as
     * needed. Returns null if this node is header so has no successor. May
     * also return null if this node is deleted, so doesn't have a distinct
     * predecessor.
     * 
     * @return predecessor or null if not found
     */
    Node<E> predecessor() {
        Node<E> n = this;
        for (;;) {
            Node<E> b = n.getPrev();
            if (b == null)
                return n.findPredecessorOf(this);
            Node<E> s = b.getNext();
            if (s == this)
                return b;
            if (s == null || !s.isMarker()) {
                Node<E> p = b.findPredecessorOf(this);
                if (p != null)
                    return p;
            }
            n = b;
        }
    }

    /**
     * Returns the next node containing a nondeleted user element. Use for
     * forward list traversal.
     * 
     * @return successor, or null if no such
     */
    Node<E> forward() {
        Node<E> f = successor();
        return (f == null || f.isSpecial()) ? null : f;
    }

    /**
     * Returns previous node containing a nondeleted user element, if
     * possible. Use for backward list traversal, but beware that if this
     * method is called from a deleted node, it might not be able to
     * determine a usable predecessor.
     * 
     * @return predecessor, or null if no such could be found
     */
    Node<E> back() {
        Node<E> f = predecessor();
        return (f == null || f.isSpecial()) ? null : f;
    }

    /**
     * Tries to insert a node holding element as successor, failing if this
     * node is deleted.
     * 
     * @param element
     *            the element
     * @return the new node, or null on failure.
     */
    Node<E> append(E element) {
        for (;;) {
            Node<E> f = getNext();
            if (f == null || f.isMarker())
                return null;
            Node<E> x = new Node<E>(element, f, this);
            if (casNext(f, x)) {
                f.setPrev(x); // optimistically link
                return x;
            }
        }
    }

    /**
     * Tries to insert a node holding element as predecessor, failing if no
     * live predecessor can be found to link to.
     * 
     * @param element
     *            the element
     * @return the new node, or null on failure.
     */
    Node<E> prepend(E element) {
        for (;;) {
            Node<E> b = predecessor();
            if (b == null)
                return null;
            Node<E> x = new Node<E>(element, this, b);
            if (b.casNext(this, x)) {
                setPrev(x); // optimistically link
                return x;
            }
        }
    }

    /**
     * Tries to mark this node as deleted, failing if already deleted or if
     * this node is header or trailer
     * 
     * @return true if successful
     */
    boolean delete() {
        Node<E> b = getPrev();
        Node<E> f = getNext();
        if (b != null && f != null && !f.isMarker() && casNext(f, new Node(f))) {
            if (b.casNext(this, f))
                f.setPrev(b);
            return true;
        }
        return false;
    }

    /**
     * Tries to insert a node holding element to replace this node. failing
     * if already deleted.
     * 
     * @param newElement
     *            the new element
     * @return the new node, or null on failure.
     */
    Node<E> replace(E newElement) {
        for (;;) {
            Node<E> b = getPrev();
            Node<E> f = getNext();
            if (b == null || f == null || f.isMarker())
                return null;
            Node<E> x = new Node<E>(newElement, f, b);
            if (casNext(f, new Node(x))) {
                b.successor(); // to relink b
                x.successor(); // to relink f
                return x;
            }
        }
    }
}