Java tutorial
//package com.java2s; import android.text.TextUtils; public class Main { /** * Author: Chas Emerick (source: http://mrfoo.de/archiv/1176-Levenshtein-Distance-in-Java.html) * * This method uses the LevenstheinDistance algorithm to compute the similarity of two strings. * * @return the minimum number of single-character edits required to change one of the given * strings into the other */ public static int getLevenshteinDistance(String s, String t) { if (s == null || t == null) { throw new IllegalArgumentException("Strings must not be null"); } if (TextUtils.isEmpty(s)) { return t.length(); } else if (TextUtils.isEmpty(t)) { return s.length(); } int n = s.length(); // length of s int m = t.length(); // length of t if (n == 0) { return m; } else if (m == 0) { return n; } int p[] = new int[n + 1]; //'previous' cost array, horizontally int d[] = new int[n + 1]; // cost array, horizontally int _d[]; //placeholder to assist in swapping p and d // indexes into strings s and t int i; // iterates through s int j; // iterates through t char t_j; // jth character of t int cost; // cost for (i = 0; i <= n; i++) { p[i] = i; } for (j = 1; j <= m; j++) { t_j = t.charAt(j - 1); d[0] = j; for (i = 1; i <= n; i++) { cost = s.charAt(i - 1) == t_j ? 0 : 1; // minimum of cell to the left+1, to the top+1, diagonally left and up +cost d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + cost); } // copy current distance counts to 'previous row' distance counts _d = p; p = d; d = _d; } // our last action in the above loop was to switch d and p, so p now // actually has the most recent cost counts return p[n]; } }