Java tutorial
//package abc.xml; public class MathUtils { public static long ppcm(int a, int b) { return Math.abs(multiplyAndCheck(a / pgcd(a, b), b)); } public static int pgcd(int u, int v) { if (u * v == 0) { return (Math.abs(u) + Math.abs(v)); } // keep u and v negative, as negative integers range down to // -2^31, while positive numbers can only be as large as 2^31-1 // (i.e. we can't necessarily negate a negative number without // overflow) /* assert u!=0 && v!=0; */ if (u > 0) { u = -u; } // make u negative if (v > 0) { v = -v; } // make v negative // B1. [Find power of 2] int k = 0; while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are // both even... u /= 2; v /= 2; k++; // cast out twos. } if (k == 31) { throw new ArithmeticException("overflow: gcd is 2^31"); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. int t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t & 1) == 0) { // while t is even.. t /= 2; // cast out twos } // B5 [reset max(u,v)] if (t > 0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u) / 2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t != 0); return -u * (1 << k); // gcd is u*2^k } public static long multiplyAndCheck(long a, long b) { long ret; String msg = "overflow: multiply"; if (a > b) { // use symmetry to reduce boundry cases ret = multiplyAndCheck(b, a); } else { if (a < 0) { if (b < 0) { // check for positive overflow with negative a, negative b if (a >= Long.MAX_VALUE / b) { ret = a * b; } else { throw new ArithmeticException(msg); } } else if (b > 0) { // check for negative overflow with negative a, positive b if (Long.MIN_VALUE / b <= a) { ret = a * b; } else { throw new ArithmeticException(msg); } } else { // assert b == 0 ret = 0; } } else if (a > 0) { // assert a > 0 // assert b > 0 // check for positive overflow with positive a, positive b if (a <= Long.MAX_VALUE / b) { ret = a * b; } else { throw new ArithmeticException(msg); } } else { // assert a == 0 ret = 0; } } return ret; } }