List of usage examples for weka.gui.visualize VisualizePanel addPlot
public void addPlot(PlotData2D newPlot) throws Exception
From source file:adams.gui.menu.MarginCurve.java
License:Open Source License
/** * Launches the functionality of the menu item. *//*from w w w . j ava 2 s .com*/ @Override public void launch() { File file; if (m_Parameters.length == 0) { // choose file int retVal = m_FileChooser.showOpenDialog(null); if (retVal != JFileChooser.APPROVE_OPTION) return; file = m_FileChooser.getSelectedFile(); } else { file = new PlaceholderFile(m_Parameters[0]).getAbsoluteFile(); m_FileChooser.setSelectedFile(file); } // create plot Instances result; try { result = m_FileChooser.getLoader().getDataSet(); } catch (Exception e) { GUIHelper.showErrorMessage(getOwner(), "Error loading file '" + file + "':\n" + adams.core.Utils.throwableToString(e)); return; } result.setClassIndex(result.numAttributes() - 1); VisualizePanel vp = new VisualizePanel(); PlotData2D plot = new PlotData2D(result); plot.m_displayAllPoints = true; boolean[] connectPoints = new boolean[result.numInstances()]; for (int cp = 1; cp < connectPoints.length; cp++) connectPoints[cp] = true; try { plot.setConnectPoints(connectPoints); vp.addPlot(plot); } catch (Exception e) { GUIHelper.showErrorMessage(getOwner(), "Error adding plot:\n" + adams.core.Utils.throwableToString(e)); return; } ChildFrame frame = createChildFrame(vp, GUIHelper.getDefaultDialogDimension()); frame.setTitle(frame.getTitle() + " - " + file); }
From source file:cyber009.main.MainSyntacticData.java
public static void main(String[] args) { Random r = new Random(System.currentTimeMillis()); Variable v = new Variable(); long timeStart = 0, timeEnd = 0; ANN ann = new ANN(v, 0.014013); for (int f = 2; f <= 2; f++) { v.N = f;/*from w w w .j a va2 s .co m*/ v.D = 4000; v.threshold = 0.0; cyber009.function.LinearFunction func = new cyber009.function.LinearFunction(v.N); v.X = new double[v.D][]; v.TARGET = new double[v.D]; v.WEIGHT = new double[v.N + 1]; for (int d = 0; d < v.D; d++) { v.X[d] = new double[v.N + 1]; v.X[d][0] = 1.0; for (int n = 1; n <= v.N; n++) { v.X[d][n] = r.nextGaussian(); } v.TARGET[d] = func.syntacticFunction(v.X[d], v.threshold); } //v.showAll(); //Lib.Utility.writeCSVDataSet("data/syn_data_x_"+v.N+"_d_"+v.D+".csv", v); List<Attribute> atts = new ArrayList<>(); Attribute[] att = new Attribute[v.N + 2]; for (int i = 0; i <= v.N; i++) { att[i] = new Attribute("X" + i); atts.add(att[i]); } List<String> classValus = new ArrayList<>(); classValus.add("1.0"); classValus.add("0.0"); att[v.N + 1] = new Attribute("class", classValus); atts.add(att[v.N + 1]); Instances dataSet = new Instances("Syn Data", (ArrayList<Attribute>) atts, v.D); for (int d = 0; d < v.D; d++) { Instance ins = new DenseInstance(v.N + 2); for (int i = 0; i <= v.N; i++) { ins.setValue(atts.get(i), v.X[d][i]); } ins.setValue(atts.get(v.N + 1), v.TARGET[d]); dataSet.add(ins); } //System.out.println(dataSet); PlotData2D p2D = new PlotData2D(dataSet); p2D.setPlotName("Syn data"); VisualizePanel vp = new VisualizePanel(); vp.setName("Show Data"); try { vp.addPlot(p2D); JFrame frame = new JFrame("Show Data"); frame.setSize(600, 600); frame.setVisible(true); frame.getContentPane().setLayout(new BorderLayout()); frame.getContentPane().add(vp, BorderLayout.CENTER); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setVisible(true); func.showCoefficients(); } catch (Exception ex) { Logger.getLogger(MainSyntacticData.class.getName()).log(Level.SEVERE, null, ex); } ann.weightReset(); timeStart = System.currentTimeMillis(); ann.gradientDescent(10000L, 2, v.D); timeEnd = System.currentTimeMillis(); //v.showTable(); //v.showWEIGHT(); System.out.println("feature #:" + v.N + " time:(" + (timeEnd - timeStart) + ")"); v.showResult(); //func.showCoefficients(); } }
From source file:cyber009.main.UDAL.java
public void showData() { List<Attribute> atts = new ArrayList<>(); Attribute[] att = new Attribute[v.N + 2]; for (int i = 0; i <= v.N; i++) { att[i] = new Attribute("X" + i); atts.add(att[i]);//from w w w .j a v a 2s. com } List<String> classValus = new ArrayList<>(); classValus.add("1.0"); classValus.add("0.0"); att[v.N + 1] = new Attribute("class", classValus); atts.add(att[v.N + 1]); Instances dataSet = new Instances("Syn Data", (ArrayList<Attribute>) atts, v.D); for (int d = 0; d < v.D; d++) { Instance ins = new DenseInstance(v.N + 2); for (int i = 0; i <= v.N; i++) { ins.setValue(atts.get(i), v.X[d][i]); } ins.setValue(atts.get(v.N + 1), v.TARGET[d]); dataSet.add(ins); } //System.out.println(dataSet); PlotData2D p2D = new PlotData2D(dataSet); p2D.setPlotName("Syn data"); VisualizePanel vp = new VisualizePanel(); vp.setName("Show Data"); try { vp.addPlot(p2D); JFrame frame = new JFrame("Show Data"); frame.setSize(600, 600); frame.setVisible(true); frame.getContentPane().setLayout(new BorderLayout()); frame.getContentPane().add(vp, BorderLayout.CENTER); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setVisible(true); func.showCoefficients(); } catch (Exception ex) { Logger.getLogger(MainSyntacticData.class.getName()).log(Level.SEVERE, null, ex); } }
From source file:cyber009.main.UDALNeuralNetwork.java
public void showData() { //System.out.println(dataSet); PlotData2D p2D = new PlotData2D(dataSet); p2D.setPlotName("Syn data"); VisualizePanel vp = new VisualizePanel(); vp.setName("Show Data"); try {/*from w w w . ja va 2 s . c o m*/ vp.addPlot(p2D); JFrame frame = new JFrame("Show Data"); frame.setSize(600, 600); frame.setVisible(true); frame.getContentPane().setLayout(new BorderLayout()); frame.getContentPane().add(vp, BorderLayout.CENTER); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setVisible(true); func.showCoefficients(); } catch (Exception ex) { Logger.getLogger(MainSyntacticData.class.getName()).log(Level.SEVERE, null, ex); } }
From source file:cyber009.udal.mains.WekaUDAL.java
public void showPlot(Instances dataSet) { PlotData2D p2D = new PlotData2D(dataSet); p2D.setPlotName(dataSet.relationName()); VisualizePanel vp = new VisualizePanel(); vp.setName(dataSet.relationName());/* ww w . j a v a2 s .com*/ try { vp.addPlot(p2D); JFrame frame = new JFrame(dataSet.relationName()); frame.setSize(600, 600); frame.setVisible(true); frame.getContentPane().setLayout(new BorderLayout()); frame.getContentPane().add(vp, BorderLayout.CENTER); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setVisible(true); } catch (Exception ex) { Logger.getLogger(WekaUDAL.class.getName()).log(Level.SEVERE, null, ex); } }
From source file:meka.gui.explorer.classify.IncrementalPerformance.java
License:Open Source License
/** * Creates a panel displaying the data./* www.ja va 2 s.c om*/ * * @param data the plot data * @return the panel * @throws Exception if plot generation fails */ protected VisualizePanel createPanel(Instances data) throws Exception { VisualizePanel result = new ThresholdVisualizePanel(); PlotData2D plot = new PlotData2D(data); plot.setPlotName("Incremental performance"); plot.m_displayAllPoints = true; boolean[] connectPoints = new boolean[data.numInstances()]; for (int cp = 1; cp < connectPoints.length; cp++) connectPoints[cp] = true; plot.setConnectPoints(connectPoints); result.addPlot(plot); if (data.attribute(SAMPLES) != null) result.setXIndex(data.attribute(SAMPLES).index()); if (data.attribute(ACCURACY) != null) result.setYIndex(data.attribute(ACCURACY).index()); return result; }
From source file:meka.gui.explorer.classify.ShowMacroCurve.java
License:Open Source License
/** * Creates a panel displaying the data./*from w w w .j a v a 2s.c o m*/ * * @param data the plot data * @return the panel * @throws Exception if plot generation fails */ protected VisualizePanel createPanel(Instances data) throws Exception { VisualizePanel result = new ThresholdVisualizePanel(); PlotData2D plot = new PlotData2D(data); plot.setPlotName("Macro-averaged Performance"); plot.m_displayAllPoints = true; boolean[] connectPoints = new boolean[data.numInstances()]; for (int cp = 1; cp < connectPoints.length; cp++) connectPoints[cp] = true; plot.setConnectPoints(connectPoints); result.addPlot(plot); if (data.attribute(SAMPLES) != null) result.setXIndex(data.attribute(SAMPLES).index()); if (data.attribute(ACCURACY) != null) result.setYIndex(data.attribute(ACCURACY).index()); return result; }
From source file:meka.gui.explorer.classify.ShowMicroCurve.java
License:Open Source License
/** * Creates a panel displaying the data./*from w ww .j a va 2s . c o m*/ * * @param data the plot data * @return the panel * @throws Exception if plot generation fails */ protected VisualizePanel createPanel(Instances data) throws Exception { VisualizePanel result = new ThresholdVisualizePanel(); PlotData2D plot = new PlotData2D(data); plot.setPlotName("Micro-averaged Performance"); plot.m_displayAllPoints = true; boolean[] connectPoints = new boolean[data.numInstances()]; for (int cp = 1; cp < connectPoints.length; cp++) connectPoints[cp] = true; plot.setConnectPoints(connectPoints); result.addPlot(plot); if (data.attribute(SAMPLES) != null) result.setXIndex(data.attribute(SAMPLES).index()); if (data.attribute(ACCURACY) != null) result.setYIndex(data.attribute(ACCURACY).index()); return result; }