Example usage for weka.gui.visualize PlotData2D PlotData2D

List of usage examples for weka.gui.visualize PlotData2D PlotData2D

Introduction

In this page you can find the example usage for weka.gui.visualize PlotData2D PlotData2D.

Prototype

public PlotData2D(Instances insts) 

Source Link

Document

Construct a new PlotData2D using the supplied instances

Usage

From source file:adams.flow.sink.WekaThresholdCurve.java

License:Open Source License

/**
 * Creates a new panel for the token./*ww w. j a v a2  s.  co  m*/
 *
 * @param token   the token to display in a new panel, can be null
 * @return      the generated panel
 */
public AbstractDisplayPanel createDisplayPanel(Token token) {
    AbstractDisplayPanel result;
    String name;

    if (token != null)
        name = "Threshold curve (" + getEvaluation(token).getHeader().relationName() + ")";
    else
        name = "Threshold curve";

    result = new AbstractComponentDisplayPanel(name) {
        private static final long serialVersionUID = -7362768698548152899L;
        protected ThresholdVisualizePanel m_VisualizePanel;

        @Override
        protected void initGUI() {
            super.initGUI();
            setLayout(new BorderLayout());
            m_VisualizePanel = new ThresholdVisualizePanel();
            add(m_VisualizePanel, BorderLayout.CENTER);
        }

        @Override
        public void display(Token token) {
            try {
                Evaluation eval = getEvaluation(token);
                m_ClassLabelRange.setMax(eval.getHeader().classAttribute().numValues());
                int[] indices = m_ClassLabelRange.getIntIndices();
                for (int index : indices) {
                    ThresholdCurve curve = new ThresholdCurve();
                    Instances data = curve.getCurve(eval.predictions(), index);
                    PlotData2D plot = new PlotData2D(data);
                    plot.setPlotName(eval.getHeader().classAttribute().value(index));
                    plot.m_displayAllPoints = true;
                    boolean[] connectPoints = new boolean[data.numInstances()];
                    for (int cp = 1; cp < connectPoints.length; cp++)
                        connectPoints[cp] = true;
                    plot.setConnectPoints(connectPoints);
                    m_VisualizePanel.addPlot(plot);
                    if (data.attribute(m_AttributeX.toDisplay()) != null)
                        m_VisualizePanel.setXIndex(data.attribute(m_AttributeX.toDisplay()).index());
                    if (data.attribute(m_AttributeY.toDisplay()) != null)
                        m_VisualizePanel.setYIndex(data.attribute(m_AttributeY.toDisplay()).index());
                }
            } catch (Exception e) {
                getLogger().log(Level.SEVERE, "Failed to display token: " + token, e);
            }
        }

        @Override
        public JComponent supplyComponent() {
            return m_VisualizePanel;
        }

        @Override
        public void clearPanel() {
            m_VisualizePanel.removeAllPlots();
        }

        public void cleanUp() {
            m_VisualizePanel.removeAllPlots();
        }
    };

    if (token != null)
        result.display(token);

    return result;
}

From source file:adams.gui.menu.CostCurve.java

License:Open Source License

/**
 * Launches the functionality of the menu item.
 *//*  w  ww. j  a v a 2s  .c o  m*/
@Override
public void launch() {
    File file;
    if (m_Parameters.length == 0) {
        // choose file
        int retVal = m_FileChooser.showOpenDialog(null);
        if (retVal != JFileChooser.APPROVE_OPTION)
            return;
        file = m_FileChooser.getSelectedFile();
    } else {
        file = new PlaceholderFile(m_Parameters[0]).getAbsoluteFile();
        m_FileChooser.setSelectedFile(file);
    }

    // create plot
    Instances result;
    try {
        result = m_FileChooser.getLoader().getDataSet();
    } catch (Exception e) {
        GUIHelper.showErrorMessage(getOwner(),
                "Error loading file '" + file + "':\n" + adams.core.Utils.throwableToString(e));
        return;
    }
    result.setClassIndex(result.numAttributes() - 1);
    ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
    PlotData2D plot = new PlotData2D(result);
    plot.setPlotName(result.relationName());
    plot.m_displayAllPoints = true;
    boolean[] connectPoints = new boolean[result.numInstances()];
    for (int cp = 1; cp < connectPoints.length; cp++)
        connectPoints[cp] = true;
    try {
        plot.setConnectPoints(connectPoints);
        vmc.addPlot(plot);
    } catch (Exception e) {
        GUIHelper.showErrorMessage(getOwner(), "Error adding plot:\n" + adams.core.Utils.throwableToString(e));
        return;
    }

    ChildFrame frame = createChildFrame(vmc, GUIHelper.getDefaultDialogDimension());
    frame.setTitle(frame.getTitle() + " - " + file);
}

From source file:adams.gui.menu.InstancesPlot.java

License:Open Source License

/**
 * Launches the functionality of the menu item.
 *//*from   w ww .  j a  va 2s.co m*/
@Override
public void launch() {
    File file;
    AbstractFileLoader loader;
    if (m_Parameters.length == 0) {
        // choose file
        int retVal = m_FileChooser.showOpenDialog(getOwner());
        if (retVal != JFileChooser.APPROVE_OPTION)
            return;
        file = m_FileChooser.getSelectedFile();
        loader = m_FileChooser.getLoader();
    } else {
        file = new PlaceholderFile(m_Parameters[0]).getAbsoluteFile();
        loader = ConverterUtils.getLoaderForFile(file);
    }

    // build plot
    VisualizePanel panel = new VisualizePanel();
    getLogger().severe("Loading instances from " + file);
    try {
        loader.setFile(file);
        Instances i = loader.getDataSet();
        i.setClassIndex(i.numAttributes() - 1);
        PlotData2D pd1 = new PlotData2D(i);
        pd1.setPlotName("Master plot");
        panel.setMasterPlot(pd1);
    } catch (Exception e) {
        getLogger().log(Level.SEVERE, "Failed to load: " + file, e);
        GUIHelper.showErrorMessage(getOwner(),
                "Error loading file '" + file + "':\n" + Utils.throwableToString(e));
        return;
    }

    // create frame
    ChildFrame frame = createChildFrame(panel, GUIHelper.getDefaultDialogDimension());
    frame.setTitle(frame.getTitle() + " - " + file);
}

From source file:adams.gui.menu.MarginCurve.java

License:Open Source License

/**
 * Launches the functionality of the menu item.
 *///  w  ww . jav a2  s  . c  o m
@Override
public void launch() {
    File file;
    if (m_Parameters.length == 0) {
        // choose file
        int retVal = m_FileChooser.showOpenDialog(null);
        if (retVal != JFileChooser.APPROVE_OPTION)
            return;
        file = m_FileChooser.getSelectedFile();
    } else {
        file = new PlaceholderFile(m_Parameters[0]).getAbsoluteFile();
        m_FileChooser.setSelectedFile(file);
    }

    // create plot
    Instances result;
    try {
        result = m_FileChooser.getLoader().getDataSet();
    } catch (Exception e) {
        GUIHelper.showErrorMessage(getOwner(),
                "Error loading file '" + file + "':\n" + adams.core.Utils.throwableToString(e));
        return;
    }
    result.setClassIndex(result.numAttributes() - 1);
    VisualizePanel vp = new VisualizePanel();
    PlotData2D plot = new PlotData2D(result);
    plot.m_displayAllPoints = true;
    boolean[] connectPoints = new boolean[result.numInstances()];
    for (int cp = 1; cp < connectPoints.length; cp++)
        connectPoints[cp] = true;
    try {
        plot.setConnectPoints(connectPoints);
        vp.addPlot(plot);
    } catch (Exception e) {
        GUIHelper.showErrorMessage(getOwner(), "Error adding plot:\n" + adams.core.Utils.throwableToString(e));
        return;
    }

    ChildFrame frame = createChildFrame(vp, GUIHelper.getDefaultDialogDimension());
    frame.setTitle(frame.getTitle() + " - " + file);
}

From source file:adams.gui.menu.ROC.java

License:Open Source License

/**
 * Launches the functionality of the menu item.
 *//*www. j  av  a 2  s . c o m*/
@Override
public void launch() {
    File file;
    if (m_Parameters.length == 0) {
        // choose file
        int retVal = m_FileChooser.showOpenDialog(null);
        if (retVal != JFileChooser.APPROVE_OPTION)
            return;
        file = m_FileChooser.getSelectedFile();
    } else {
        file = new PlaceholderFile(m_Parameters[0]).getAbsoluteFile();
        m_FileChooser.setSelectedFile(file);
    }

    // create plot
    Instances result;
    try {
        result = m_FileChooser.getLoader().getDataSet();
    } catch (Exception e) {
        GUIHelper.showErrorMessage(getOwner(),
                "Error loading file '" + file + "':\n" + adams.core.Utils.throwableToString(e));
        return;
    }
    result.setClassIndex(result.numAttributes() - 1);
    ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
    vmc.setROCString("(Area under ROC = " + Utils.doubleToString(ThresholdCurve.getROCArea(result), 4) + ")");
    vmc.setName(result.relationName());
    PlotData2D tempd = new PlotData2D(result);
    tempd.setPlotName(result.relationName());
    tempd.addInstanceNumberAttribute();
    // specify which points are connected
    boolean[] cp = new boolean[result.numInstances()];
    for (int n = 1; n < cp.length; n++)
        cp[n] = true;
    try {
        tempd.setConnectPoints(cp);
        vmc.addPlot(tempd);
    } catch (Exception e) {
        GUIHelper.showErrorMessage(getOwner(), "Error adding plot:\n" + adams.core.Utils.throwableToString(e));
        return;
    }

    ChildFrame frame = createChildFrame(vmc, GUIHelper.getDefaultDialogDimension());
    frame.setTitle(frame.getTitle() + " - " + file);
}

From source file:com.sliit.views.DataVisualizerPanel.java

void getRocCurve() {
    try {//from  ww  w  .  j a  va2  s.  c o  m
        Instances data;
        data = new Instances(new BufferedReader(new FileReader(datasetPathText.getText())));
        data.setClassIndex(data.numAttributes() - 1);

        // train classifier
        Classifier cl = new NaiveBayes();
        Evaluation eval = new Evaluation(data);
        eval.crossValidateModel(cl, data, 10, new Random(1));

        // generate curve
        ThresholdCurve tc = new ThresholdCurve();
        int classIndex = 0;
        Instances result = tc.getCurve(eval.predictions(), classIndex);

        // plot curve
        ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
        vmc.setROCString("(Area under ROC = " + Utils.doubleToString(tc.getROCArea(result), 4) + ")");
        vmc.setName(result.relationName());
        PlotData2D tempd = new PlotData2D(result);
        tempd.setPlotName(result.relationName());
        tempd.addInstanceNumberAttribute();
        // specify which points are connected
        boolean[] cp = new boolean[result.numInstances()];
        for (int n = 1; n < cp.length; n++) {
            cp[n] = true;
        }
        tempd.setConnectPoints(cp);
        // add plot
        vmc.addPlot(tempd);

        // display curve
        String plotName = vmc.getName();
        final javax.swing.JFrame jf = new javax.swing.JFrame("Weka Classifier Visualize: " + plotName);
        jf.setSize(500, 400);
        jf.getContentPane().setLayout(new BorderLayout());
        jf.getContentPane().add(vmc, BorderLayout.CENTER);
        jf.addWindowListener(new java.awt.event.WindowAdapter() {
            public void windowClosing(java.awt.event.WindowEvent e) {
                jf.dispose();
            }
        });
        jf.setVisible(true);
    } catch (IOException ex) {
        Logger.getLogger(DataVisualizerPanel.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(DataVisualizerPanel.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:com.sliit.views.KNNView.java

void getRocCurve() {
    try {/* ww w  . ja  v a2  s .c om*/
        Instances data;
        data = new Instances(new BufferedReader(new java.io.FileReader(PredictorPanel.modalText.getText())));
        data.setClassIndex(data.numAttributes() - 1);

        // train classifier
        Classifier cl = new NaiveBayes();
        Evaluation eval = new Evaluation(data);
        eval.crossValidateModel(cl, data, 10, new Random(1));

        // generate curve
        ThresholdCurve tc = new ThresholdCurve();
        int classIndex = 0;
        Instances result = tc.getCurve(eval.predictions(), classIndex);

        // plot curve
        ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
        vmc.setROCString("(Area under ROC = " + Utils.doubleToString(tc.getROCArea(result), 4) + ")");
        vmc.setName(result.relationName());
        PlotData2D tempd = new PlotData2D(result);
        tempd.setPlotName(result.relationName());
        tempd.addInstanceNumberAttribute();
        // specify which points are connected
        boolean[] cp = new boolean[result.numInstances()];
        for (int n = 1; n < cp.length; n++) {
            cp[n] = true;
        }
        tempd.setConnectPoints(cp);
        // add plot
        vmc.addPlot(tempd);

        rocPanel.removeAll();
        rocPanel.add(vmc, "vmc", 0);
        rocPanel.revalidate();

    } catch (IOException ex) {
        Logger.getLogger(DataVisualizerPanel.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(DataVisualizerPanel.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:com.sliit.views.SVMView.java

/**
 * draw ROC curve//w  w  w.  j a v a  2  s  .c  o  m
 */
void getRocCurve() {
    try {
        Instances data;
        data = new Instances(new BufferedReader(new FileReader(PredictorPanel.modalText.getText())));
        data.setClassIndex(data.numAttributes() - 1);

        //train classifier
        Classifier cl = new NaiveBayes();
        Evaluation eval = new Evaluation(data);
        eval.crossValidateModel(cl, data, 10, new Random(1));

        // generate curve
        ThresholdCurve tc = new ThresholdCurve();
        int classIndex = 0;
        Instances result = tc.getCurve(eval.predictions(), classIndex);

        // plot curve
        ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
        vmc.setROCString("(Area under ROC = " + Utils.doubleToString(tc.getROCArea(result), 4) + ")");
        vmc.setName(result.relationName());
        PlotData2D tempd = new PlotData2D(result);
        tempd.setPlotName(result.relationName());
        tempd.addInstanceNumberAttribute();
        // specify which points are connected
        boolean[] cp = new boolean[result.numInstances()];
        for (int n = 1; n < cp.length; n++) {
            cp[n] = true;
        }
        tempd.setConnectPoints(cp);
        // add plot
        vmc.addPlot(tempd);

        //            rocPanel.removeAll();
        //            rocPanel.add(vmc, "vmc", 0);
        //            rocPanel.revalidate();
    } catch (IOException ex) {
        Logger.getLogger(DataVisualizerPanel.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(DataVisualizerPanel.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:cs.man.ac.uk.classifiers.GetAUC.java

License:Open Source License

/**
 * Computes the AUC for the supplied learner.
 * @param learner the learning algorithm to use.
 * @return the AUC as a double value./*from w ww.ja  va  2s  .  c o m*/
 */
@SuppressWarnings("unused")
private static double validate(Classifier learner) {
    try {

        Evaluation eval = new Evaluation(data);
        eval.crossValidateModel(learner, data, 2, new Random(1));

        // generate curve
        ThresholdCurve tc = new ThresholdCurve();
        int classIndex = 0;
        Instances result = tc.getCurve(eval.predictions(), classIndex);

        // plot curve
        vmc = new ThresholdVisualizePanel();
        double AUC = ThresholdCurve.getROCArea(result);
        vmc.setROCString(
                "(Area under ROC = " + Utils.doubleToString(ThresholdCurve.getROCArea(result), 9) + ")");
        vmc.setName(result.relationName());

        PlotData2D tempd = new PlotData2D(result);
        tempd.setPlotName(result.relationName());
        tempd.addInstanceNumberAttribute();

        // specify which points are connected
        boolean[] cp = new boolean[result.numInstances()];
        for (int n = 1; n < cp.length; n++)
            cp[n] = true;

        tempd.setConnectPoints(cp);
        // add plot
        vmc.addPlot(tempd);

        return AUC;
    } catch (Exception e) {
        System.out.println("Exception validating data!");
        return 0;
    }
}

From source file:cyber009.main.MainSyntacticData.java

public static void main(String[] args) {
    Random r = new Random(System.currentTimeMillis());
    Variable v = new Variable();
    long timeStart = 0, timeEnd = 0;
    ANN ann = new ANN(v, 0.014013);
    for (int f = 2; f <= 2; f++) {
        v.N = f;//from w  ww  .  j  av  a2 s  .  co m
        v.D = 4000;
        v.threshold = 0.0;
        cyber009.function.LinearFunction func = new cyber009.function.LinearFunction(v.N);
        v.X = new double[v.D][];
        v.TARGET = new double[v.D];
        v.WEIGHT = new double[v.N + 1];
        for (int d = 0; d < v.D; d++) {
            v.X[d] = new double[v.N + 1];
            v.X[d][0] = 1.0;
            for (int n = 1; n <= v.N; n++) {
                v.X[d][n] = r.nextGaussian();
            }
            v.TARGET[d] = func.syntacticFunction(v.X[d], v.threshold);
        }

        //v.showAll();
        //Lib.Utility.writeCSVDataSet("data/syn_data_x_"+v.N+"_d_"+v.D+".csv", v);

        List<Attribute> atts = new ArrayList<>();
        Attribute[] att = new Attribute[v.N + 2];
        for (int i = 0; i <= v.N; i++) {
            att[i] = new Attribute("X" + i);
            atts.add(att[i]);
        }
        List<String> classValus = new ArrayList<>();
        classValus.add("1.0");
        classValus.add("0.0");
        att[v.N + 1] = new Attribute("class", classValus);
        atts.add(att[v.N + 1]);
        Instances dataSet = new Instances("Syn Data", (ArrayList<Attribute>) atts, v.D);

        for (int d = 0; d < v.D; d++) {
            Instance ins = new DenseInstance(v.N + 2);
            for (int i = 0; i <= v.N; i++) {
                ins.setValue(atts.get(i), v.X[d][i]);
            }
            ins.setValue(atts.get(v.N + 1), v.TARGET[d]);
            dataSet.add(ins);
        }
        //System.out.println(dataSet);
        PlotData2D p2D = new PlotData2D(dataSet);
        p2D.setPlotName("Syn data");
        VisualizePanel vp = new VisualizePanel();
        vp.setName("Show Data");
        try {
            vp.addPlot(p2D);

            JFrame frame = new JFrame("Show Data");
            frame.setSize(600, 600);
            frame.setVisible(true);
            frame.getContentPane().setLayout(new BorderLayout());
            frame.getContentPane().add(vp, BorderLayout.CENTER);
            frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
            frame.setVisible(true);
            func.showCoefficients();
        } catch (Exception ex) {
            Logger.getLogger(MainSyntacticData.class.getName()).log(Level.SEVERE, null, ex);
        }

        ann.weightReset();
        timeStart = System.currentTimeMillis();
        ann.gradientDescent(10000L, 2, v.D);
        timeEnd = System.currentTimeMillis();
        //v.showTable();
        //v.showWEIGHT();
        System.out.println("feature #:" + v.N + " time:(" + (timeEnd - timeStart) + ")");
        v.showResult();
        //func.showCoefficients();
    }
}