List of usage examples for weka.experiment CSVResultListener setOutputFile
public void setOutputFile(File newOutputFile)
From source file:adams.flow.sink.WekaExperimentGenerator.java
License:Open Source License
/** * Executes the flow item.//from ww w .j a v a 2 s .c om * * @return null if everything is fine, otherwise error message */ @Override protected String doExecute() { String result; Experiment exp; SplitEvaluator se; Classifier sec; CrossValidationResultProducer cvrp; RandomSplitResultProducer rsrp; PropertyNode[] propertyPath; DefaultListModel model; InstancesResultListener irl; CSVResultListener crl; result = null; if (m_ResultFile.isDirectory()) result = "Result file points to a directory: " + m_ResultFile; else if (m_OutputFile.isDirectory()) result = "Output file points to a directory: " + m_OutputFile; if (result == null) { exp = new Experiment(); exp.setPropertyArray(new Classifier[0]); exp.setUsePropertyIterator(true); // classification or regression se = null; sec = null; if (m_ExperimentType == ExperimentType.CLASSIFICATION) { se = new ClassifierSplitEvaluator(); sec = ((ClassifierSplitEvaluator) se).getClassifier(); } else if (m_ExperimentType == ExperimentType.REGRESSION) { se = new RegressionSplitEvaluator(); sec = ((RegressionSplitEvaluator) se).getClassifier(); } else { throw new IllegalStateException("Unhandled experiment type: " + m_ExperimentType); } // crossvalidation or train/test split if (m_EvaluationType == EvaluationType.CROSS_VALIDATION) { cvrp = new CrossValidationResultProducer(); cvrp.setNumFolds(m_Folds); cvrp.setSplitEvaluator(se); propertyPath = new PropertyNode[2]; try { propertyPath[0] = new PropertyNode(se, new PropertyDescriptor("splitEvaluator", CrossValidationResultProducer.class), CrossValidationResultProducer.class); propertyPath[1] = new PropertyNode(sec, new PropertyDescriptor("classifier", se.getClass()), se.getClass()); } catch (IntrospectionException e) { e.printStackTrace(); } exp.setResultProducer(cvrp); exp.setPropertyPath(propertyPath); } else if ((m_EvaluationType == EvaluationType.TRAIN_TEST_SPLIT_RANDOMIZED) || (m_EvaluationType == EvaluationType.TRAIN_TEST_SPLIT_ORDER_PRESERVED)) { rsrp = new RandomSplitResultProducer(); rsrp.setRandomizeData(m_EvaluationType == EvaluationType.TRAIN_TEST_SPLIT_RANDOMIZED); rsrp.setTrainPercent(m_SplitPercentage); rsrp.setSplitEvaluator(se); propertyPath = new PropertyNode[2]; try { propertyPath[0] = new PropertyNode(se, new PropertyDescriptor("splitEvaluator", RandomSplitResultProducer.class), RandomSplitResultProducer.class); propertyPath[1] = new PropertyNode(sec, new PropertyDescriptor("classifier", se.getClass()), se.getClass()); } catch (IntrospectionException e) { e.printStackTrace(); } exp.setResultProducer(rsrp); exp.setPropertyPath(propertyPath); } else { throw new IllegalStateException("Unhandled evaluation type: " + m_EvaluationType); } // runs exp.setRunLower(1); exp.setRunUpper(m_Runs); // classifier exp.setPropertyArray((Classifier[]) m_InputToken.getPayload()); // datasets (empty for the template) model = new DefaultListModel(); exp.setDatasets(model); // result if (m_ResultFormat == ResultFormat.ARFF) { irl = new InstancesResultListener(); irl.setOutputFile(new File(m_ResultFile.getAbsolutePath())); exp.setResultListener(irl); } else if (m_ResultFormat == ResultFormat.CSV) { crl = new CSVResultListener(); crl.setOutputFile(new File(m_ResultFile.getAbsolutePath())); exp.setResultListener(crl); } else { throw new IllegalStateException("Unhandled result format: " + m_ResultFormat); } // save template try { Experiment.write(m_OutputFile.getAbsolutePath(), exp); } catch (Exception e) { result = handleException("Failed to save experiment to '" + m_OutputFile + "': ", e); } } return result; }