Example usage for weka.estimators NormalEstimator getStdDev

List of usage examples for weka.estimators NormalEstimator getStdDev

Introduction

In this page you can find the example usage for weka.estimators NormalEstimator getStdDev.

Prototype

public double getStdDev() 

Source Link

Document

Return the value of the standard deviation of this normal estimator.

Usage

From source file:cn.edu.xjtu.dbmine.source.NaiveBayes.java

License:Open Source License

/**
 * Returns a description of the classifier.
 *
 * @return a description of the classifier as a string.
 *//* w ww.j a v  a2  s  .  com*/
public String toString() {
    if (m_displayModelInOldFormat) {
        return toStringOriginal();
    }

    StringBuffer temp = new StringBuffer();
    temp.append("Naive Bayes Classifier");
    if (m_Instances == null) {
        temp.append(": No model built yet.");
    } else {

        int maxWidth = 0;
        int maxAttWidth = 0;
        boolean containsKernel = false;

        // set up max widths
        // class values
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            if (m_Instances.classAttribute().value(i).length() > maxWidth) {
                maxWidth = m_Instances.classAttribute().value(i).length();
            }
        }
        // attributes
        for (int i = 0; i < m_Instances.numAttributes(); i++) {
            if (i != m_Instances.classIndex()) {
                Attribute a = m_Instances.attribute(i);
                if (a.name().length() > maxAttWidth) {
                    maxAttWidth = m_Instances.attribute(i).name().length();
                }
                if (a.isNominal()) {
                    // check values
                    for (int j = 0; j < a.numValues(); j++) {
                        String val = a.value(j) + "  ";
                        if (val.length() > maxAttWidth) {
                            maxAttWidth = val.length();
                        }
                    }
                }
            }
        }

        for (int i = 0; i < m_Distributions.length; i++) {
            for (int j = 0; j < m_Instances.numClasses(); j++) {
                if (m_Distributions[i][0] instanceof NormalEstimator) {
                    // check mean/precision dev against maxWidth
                    NormalEstimator n = (NormalEstimator) m_Distributions[i][j];
                    double mean = Math.log(Math.abs(n.getMean())) / Math.log(10.0);
                    double precision = Math.log(Math.abs(n.getPrecision())) / Math.log(10.0);
                    double width = (mean > precision) ? mean : precision;
                    if (width < 0) {
                        width = 1;
                    }
                    // decimal + # decimal places + 1
                    width += 6.0;
                    if ((int) width > maxWidth) {
                        maxWidth = (int) width;
                    }
                } else if (m_Distributions[i][0] instanceof KernelEstimator) {
                    containsKernel = true;
                    KernelEstimator ke = (KernelEstimator) m_Distributions[i][j];
                    int numK = ke.getNumKernels();
                    String temps = "K" + numK + ": mean (weight)";
                    if (maxAttWidth < temps.length()) {
                        maxAttWidth = temps.length();
                    }
                    // check means + weights against maxWidth
                    if (ke.getNumKernels() > 0) {
                        double[] means = ke.getMeans();
                        double[] weights = ke.getWeights();
                        for (int k = 0; k < ke.getNumKernels(); k++) {
                            String m = Utils.doubleToString(means[k], maxWidth, 4).trim();
                            m += " (" + Utils.doubleToString(weights[k], maxWidth, 1).trim() + ")";
                            if (maxWidth < m.length()) {
                                maxWidth = m.length();
                            }
                        }
                    }
                } else if (m_Distributions[i][0] instanceof DiscreteEstimator) {
                    DiscreteEstimator d = (DiscreteEstimator) m_Distributions[i][j];
                    for (int k = 0; k < d.getNumSymbols(); k++) {
                        String size = "" + d.getCount(k);
                        if (size.length() > maxWidth) {
                            maxWidth = size.length();
                        }
                    }
                    int sum = ("" + d.getSumOfCounts()).length();
                    if (sum > maxWidth) {
                        maxWidth = sum;
                    }
                }
            }
        }

        // Check width of class labels
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            String cSize = m_Instances.classAttribute().value(i);
            if (cSize.length() > maxWidth) {
                maxWidth = cSize.length();
            }
        }

        // Check width of class priors
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            String priorP = Utils
                    .doubleToString(((DiscreteEstimator) m_ClassDistribution).getProbability(i), maxWidth, 2)
                    .trim();
            priorP = "(" + priorP + ")";
            if (priorP.length() > maxWidth) {
                maxWidth = priorP.length();
            }
        }

        if (maxAttWidth < "Attribute".length()) {
            maxAttWidth = "Attribute".length();
        }

        if (maxAttWidth < "  weight sum".length()) {
            maxAttWidth = "  weight sum".length();
        }

        if (containsKernel) {
            if (maxAttWidth < "  [precision]".length()) {
                maxAttWidth = "  [precision]".length();
            }
        }

        maxAttWidth += 2;

        temp.append("\n\n");
        temp.append(pad("Class", " ", (maxAttWidth + maxWidth + 1) - "Class".length(), true));

        temp.append("\n");
        temp.append(pad("Attribute", " ", maxAttWidth - "Attribute".length(), false));
        // class labels
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            String classL = m_Instances.classAttribute().value(i);
            temp.append(pad(classL, " ", maxWidth + 1 - classL.length(), true));
        }
        temp.append("\n");
        // class priors
        temp.append(pad("", " ", maxAttWidth, true));
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            String priorP = Utils
                    .doubleToString(((DiscreteEstimator) m_ClassDistribution).getProbability(i), maxWidth, 2)
                    .trim();
            priorP = "(" + priorP + ")";
            temp.append(pad(priorP, " ", maxWidth + 1 - priorP.length(), true));
        }
        temp.append("\n");
        temp.append(pad("", "=",
                maxAttWidth + (maxWidth * m_Instances.numClasses()) + m_Instances.numClasses() + 1, true));
        temp.append("\n");

        // loop over the attributes
        int counter = 0;
        for (int i = 0; i < m_Instances.numAttributes(); i++) {
            if (i == m_Instances.classIndex()) {
                continue;
            }
            String attName = m_Instances.attribute(i).name();
            temp.append(attName + "\n");

            if (m_Distributions[counter][0] instanceof NormalEstimator) {
                String meanL = "  mean";
                temp.append(pad(meanL, " ", maxAttWidth + 1 - meanL.length(), false));
                for (int j = 0; j < m_Instances.numClasses(); j++) {
                    // means
                    NormalEstimator n = (NormalEstimator) m_Distributions[counter][j];
                    String mean = Utils.doubleToString(n.getMean(), maxWidth, 4).trim();
                    temp.append(pad(mean, " ", maxWidth + 1 - mean.length(), true));
                }
                temp.append("\n");
                // now do std deviations
                String stdDevL = "  std. dev.";
                temp.append(pad(stdDevL, " ", maxAttWidth + 1 - stdDevL.length(), false));
                for (int j = 0; j < m_Instances.numClasses(); j++) {
                    NormalEstimator n = (NormalEstimator) m_Distributions[counter][j];
                    String stdDev = Utils.doubleToString(n.getStdDev(), maxWidth, 4).trim();
                    temp.append(pad(stdDev, " ", maxWidth + 1 - stdDev.length(), true));
                }
                temp.append("\n");
                // now the weight sums
                String weightL = "  weight sum";
                temp.append(pad(weightL, " ", maxAttWidth + 1 - weightL.length(), false));
                for (int j = 0; j < m_Instances.numClasses(); j++) {
                    NormalEstimator n = (NormalEstimator) m_Distributions[counter][j];
                    String weight = Utils.doubleToString(n.getSumOfWeights(), maxWidth, 4).trim();
                    temp.append(pad(weight, " ", maxWidth + 1 - weight.length(), true));
                }
                temp.append("\n");
                // now the precisions
                String precisionL = "  precision";
                temp.append(pad(precisionL, " ", maxAttWidth + 1 - precisionL.length(), false));
                for (int j = 0; j < m_Instances.numClasses(); j++) {
                    NormalEstimator n = (NormalEstimator) m_Distributions[counter][j];
                    String precision = Utils.doubleToString(n.getPrecision(), maxWidth, 4).trim();
                    temp.append(pad(precision, " ", maxWidth + 1 - precision.length(), true));
                }
                temp.append("\n\n");

            } else if (m_Distributions[counter][0] instanceof DiscreteEstimator) {
                Attribute a = m_Instances.attribute(i);
                for (int j = 0; j < a.numValues(); j++) {
                    String val = "  " + a.value(j);
                    temp.append(pad(val, " ", maxAttWidth + 1 - val.length(), false));
                    for (int k = 0; k < m_Instances.numClasses(); k++) {
                        DiscreteEstimator d = (DiscreteEstimator) m_Distributions[counter][k];
                        String count = "" + d.getCount(j);
                        temp.append(pad(count, " ", maxWidth + 1 - count.length(), true));
                    }
                    temp.append("\n");
                }
                // do the totals
                String total = "  [total]";
                temp.append(pad(total, " ", maxAttWidth + 1 - total.length(), false));
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    DiscreteEstimator d = (DiscreteEstimator) m_Distributions[counter][k];
                    String count = "" + d.getSumOfCounts();
                    temp.append(pad(count, " ", maxWidth + 1 - count.length(), true));
                }
                temp.append("\n\n");
            } else if (m_Distributions[counter][0] instanceof KernelEstimator) {
                String kL = "  [# kernels]";
                temp.append(pad(kL, " ", maxAttWidth + 1 - kL.length(), false));
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                    String nk = "" + ke.getNumKernels();
                    temp.append(pad(nk, " ", maxWidth + 1 - nk.length(), true));
                }
                temp.append("\n");
                // do num kernels, std. devs and precisions
                String stdDevL = "  [std. dev]";
                temp.append(pad(stdDevL, " ", maxAttWidth + 1 - stdDevL.length(), false));
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                    String stdD = Utils.doubleToString(ke.getStdDev(), maxWidth, 4).trim();
                    temp.append(pad(stdD, " ", maxWidth + 1 - stdD.length(), true));
                }
                temp.append("\n");
                String precL = "  [precision]";
                temp.append(pad(precL, " ", maxAttWidth + 1 - precL.length(), false));
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                    String prec = Utils.doubleToString(ke.getPrecision(), maxWidth, 4).trim();
                    temp.append(pad(prec, " ", maxWidth + 1 - prec.length(), true));
                }
                temp.append("\n");
                // first determine max number of kernels accross the classes
                int maxK = 0;
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                    if (ke.getNumKernels() > maxK) {
                        maxK = ke.getNumKernels();
                    }
                }
                for (int j = 0; j < maxK; j++) {
                    // means first
                    String meanL = "  K" + (j + 1) + ": mean (weight)";
                    temp.append(pad(meanL, " ", maxAttWidth + 1 - meanL.length(), false));
                    for (int k = 0; k < m_Instances.numClasses(); k++) {
                        KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                        double[] means = ke.getMeans();
                        double[] weights = ke.getWeights();
                        String m = "--";
                        if (ke.getNumKernels() == 0) {
                            m = "" + 0;
                        } else if (j < ke.getNumKernels()) {
                            m = Utils.doubleToString(means[j], maxWidth, 4).trim();
                            m += " (" + Utils.doubleToString(weights[j], maxWidth, 1).trim() + ")";
                        }
                        temp.append(pad(m, " ", maxWidth + 1 - m.length(), true));
                    }
                    temp.append("\n");
                }
                temp.append("\n");
            }

            counter++;
        }
    }

    return temp.toString();
}

From source file:main.NaiveBayes.java

License:Open Source License

/**
 * Returns a description of the classifier.
 * /*w  w  w  .ja  va 2 s.c om*/
 * @return a description of the classifier as a string.
 */
@Override
public String toString() {
    if (m_displayModelInOldFormat) {
        return toStringOriginal();
    }

    StringBuffer temp = new StringBuffer();
    temp.append("Naive Bayes Classifier");
    if (m_Instances == null) {
        temp.append(": No model built yet.");
    } else {

        int maxWidth = 0;
        int maxAttWidth = 0;
        boolean containsKernel = false;

        // set up max widths
        // class values
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            if (m_Instances.classAttribute().value(i).length() > maxWidth) {
                maxWidth = m_Instances.classAttribute().value(i).length();
            }
        }
        // attributes
        for (int i = 0; i < m_Instances.numAttributes(); i++) {
            if (i != m_Instances.classIndex()) {
                Attribute a = m_Instances.attribute(i);
                if (a.name().length() > maxAttWidth) {
                    maxAttWidth = m_Instances.attribute(i).name().length();
                }
                if (a.isNominal()) {
                    // check values
                    for (int j = 0; j < a.numValues(); j++) {
                        String val = a.value(j) + "  ";
                        if (val.length() > maxAttWidth) {
                            maxAttWidth = val.length();
                        }
                    }
                }
            }
        }

        for (Estimator[] m_Distribution : m_Distributions) {
            for (int j = 0; j < m_Instances.numClasses(); j++) {
                if (m_Distribution[0] instanceof NormalEstimator) {
                    // check mean/precision dev against maxWidth
                    NormalEstimator n = (NormalEstimator) m_Distribution[j];
                    double mean = Math.log(Math.abs(n.getMean())) / Math.log(10.0);
                    double precision = Math.log(Math.abs(n.getPrecision())) / Math.log(10.0);
                    double width = (mean > precision) ? mean : precision;
                    if (width < 0) {
                        width = 1;
                    }
                    // decimal + # decimal places + 1
                    width += 6.0;
                    if ((int) width > maxWidth) {
                        maxWidth = (int) width;
                    }
                } else if (m_Distribution[0] instanceof KernelEstimator) {
                    containsKernel = true;
                    KernelEstimator ke = (KernelEstimator) m_Distribution[j];
                    int numK = ke.getNumKernels();
                    String temps = "K" + numK + ": mean (weight)";
                    if (maxAttWidth < temps.length()) {
                        maxAttWidth = temps.length();
                    }
                    // check means + weights against maxWidth
                    if (ke.getNumKernels() > 0) {
                        double[] means = ke.getMeans();
                        double[] weights = ke.getWeights();
                        for (int k = 0; k < ke.getNumKernels(); k++) {
                            String m = Utils.doubleToString(means[k], maxWidth, 4).trim();
                            m += " (" + Utils.doubleToString(weights[k], maxWidth, 1).trim() + ")";
                            if (maxWidth < m.length()) {
                                maxWidth = m.length();
                            }
                        }
                    }
                } else if (m_Distribution[0] instanceof DiscreteEstimator) {
                    DiscreteEstimator d = (DiscreteEstimator) m_Distribution[j];
                    for (int k = 0; k < d.getNumSymbols(); k++) {
                        String size = "" + d.getCount(k);
                        if (size.length() > maxWidth) {
                            maxWidth = size.length();
                        }
                    }
                    int sum = ("" + d.getSumOfCounts()).length();
                    if (sum > maxWidth) {
                        maxWidth = sum;
                    }
                }
            }
        }

        // Check width of class labels
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            String cSize = m_Instances.classAttribute().value(i);
            if (cSize.length() > maxWidth) {
                maxWidth = cSize.length();
            }
        }

        // Check width of class priors
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            String priorP = Utils
                    .doubleToString(((DiscreteEstimator) m_ClassDistribution).getProbability(i), maxWidth, 2)
                    .trim();
            priorP = "(" + priorP + ")";
            if (priorP.length() > maxWidth) {
                maxWidth = priorP.length();
            }
        }

        if (maxAttWidth < "Attribute".length()) {
            maxAttWidth = "Attribute".length();
        }

        if (maxAttWidth < "  weight sum".length()) {
            maxAttWidth = "  weight sum".length();
        }

        if (containsKernel) {
            if (maxAttWidth < "  [precision]".length()) {
                maxAttWidth = "  [precision]".length();
            }
        }

        maxAttWidth += 2;

        temp.append("\n\n");
        temp.append(pad("Class", " ", (maxAttWidth + maxWidth + 1) - "Class".length(), true));

        temp.append("\n");
        temp.append(pad("Attribute", " ", maxAttWidth - "Attribute".length(), false));
        // class labels
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            String classL = m_Instances.classAttribute().value(i);
            temp.append(pad(classL, " ", maxWidth + 1 - classL.length(), true));
        }
        temp.append("\n");
        // class priors
        temp.append(pad("", " ", maxAttWidth, true));
        for (int i = 0; i < m_Instances.numClasses(); i++) {
            String priorP = Utils
                    .doubleToString(((DiscreteEstimator) m_ClassDistribution).getProbability(i), maxWidth, 2)
                    .trim();
            priorP = "(" + priorP + ")";
            temp.append(pad(priorP, " ", maxWidth + 1 - priorP.length(), true));
        }
        temp.append("\n");
        temp.append(pad("", "=",
                maxAttWidth + (maxWidth * m_Instances.numClasses()) + m_Instances.numClasses() + 1, true));
        temp.append("\n");

        // loop over the attributes
        int counter = 0;
        for (int i = 0; i < m_Instances.numAttributes(); i++) {
            if (i == m_Instances.classIndex()) {
                continue;
            }
            String attName = m_Instances.attribute(i).name();
            temp.append(attName + "\n");

            if (m_Distributions[counter][0] instanceof NormalEstimator) {
                String meanL = "  mean";
                temp.append(pad(meanL, " ", maxAttWidth + 1 - meanL.length(), false));
                for (int j = 0; j < m_Instances.numClasses(); j++) {
                    // means
                    NormalEstimator n = (NormalEstimator) m_Distributions[counter][j];
                    String mean = Utils.doubleToString(n.getMean(), maxWidth, 4).trim();
                    temp.append(pad(mean, " ", maxWidth + 1 - mean.length(), true));
                }
                temp.append("\n");
                // now do std deviations
                String stdDevL = "  std. dev.";
                temp.append(pad(stdDevL, " ", maxAttWidth + 1 - stdDevL.length(), false));
                for (int j = 0; j < m_Instances.numClasses(); j++) {
                    NormalEstimator n = (NormalEstimator) m_Distributions[counter][j];
                    String stdDev = Utils.doubleToString(n.getStdDev(), maxWidth, 4).trim();
                    temp.append(pad(stdDev, " ", maxWidth + 1 - stdDev.length(), true));
                }
                temp.append("\n");
                // now the weight sums
                String weightL = "  weight sum";
                temp.append(pad(weightL, " ", maxAttWidth + 1 - weightL.length(), false));
                for (int j = 0; j < m_Instances.numClasses(); j++) {
                    NormalEstimator n = (NormalEstimator) m_Distributions[counter][j];
                    String weight = Utils.doubleToString(n.getSumOfWeights(), maxWidth, 4).trim();
                    temp.append(pad(weight, " ", maxWidth + 1 - weight.length(), true));
                }
                temp.append("\n");
                // now the precisions
                String precisionL = "  precision";
                temp.append(pad(precisionL, " ", maxAttWidth + 1 - precisionL.length(), false));
                for (int j = 0; j < m_Instances.numClasses(); j++) {
                    NormalEstimator n = (NormalEstimator) m_Distributions[counter][j];
                    String precision = Utils.doubleToString(n.getPrecision(), maxWidth, 4).trim();
                    temp.append(pad(precision, " ", maxWidth + 1 - precision.length(), true));
                }
                temp.append("\n\n");

            } else if (m_Distributions[counter][0] instanceof DiscreteEstimator) {
                Attribute a = m_Instances.attribute(i);
                for (int j = 0; j < a.numValues(); j++) {
                    String val = "  " + a.value(j);
                    temp.append(pad(val, " ", maxAttWidth + 1 - val.length(), false));
                    for (int k = 0; k < m_Instances.numClasses(); k++) {
                        DiscreteEstimator d = (DiscreteEstimator) m_Distributions[counter][k];
                        String count = "" + d.getCount(j);
                        temp.append(pad(count, " ", maxWidth + 1 - count.length(), true));
                    }
                    temp.append("\n");
                }
                // do the totals
                String total = "  [total]";
                temp.append(pad(total, " ", maxAttWidth + 1 - total.length(), false));
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    DiscreteEstimator d = (DiscreteEstimator) m_Distributions[counter][k];
                    String count = "" + d.getSumOfCounts();
                    temp.append(pad(count, " ", maxWidth + 1 - count.length(), true));
                }
                temp.append("\n\n");
            } else if (m_Distributions[counter][0] instanceof KernelEstimator) {
                String kL = "  [# kernels]";
                temp.append(pad(kL, " ", maxAttWidth + 1 - kL.length(), false));
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                    String nk = "" + ke.getNumKernels();
                    temp.append(pad(nk, " ", maxWidth + 1 - nk.length(), true));
                }
                temp.append("\n");
                // do num kernels, std. devs and precisions
                String stdDevL = "  [std. dev]";
                temp.append(pad(stdDevL, " ", maxAttWidth + 1 - stdDevL.length(), false));
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                    String stdD = Utils.doubleToString(ke.getStdDev(), maxWidth, 4).trim();
                    temp.append(pad(stdD, " ", maxWidth + 1 - stdD.length(), true));
                }
                temp.append("\n");
                String precL = "  [precision]";
                temp.append(pad(precL, " ", maxAttWidth + 1 - precL.length(), false));
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                    String prec = Utils.doubleToString(ke.getPrecision(), maxWidth, 4).trim();
                    temp.append(pad(prec, " ", maxWidth + 1 - prec.length(), true));
                }
                temp.append("\n");
                // first determine max number of kernels accross the classes
                int maxK = 0;
                for (int k = 0; k < m_Instances.numClasses(); k++) {
                    KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                    if (ke.getNumKernels() > maxK) {
                        maxK = ke.getNumKernels();
                    }
                }
                for (int j = 0; j < maxK; j++) {
                    // means first
                    String meanL = "  K" + (j + 1) + ": mean (weight)";
                    temp.append(pad(meanL, " ", maxAttWidth + 1 - meanL.length(), false));
                    for (int k = 0; k < m_Instances.numClasses(); k++) {
                        KernelEstimator ke = (KernelEstimator) m_Distributions[counter][k];
                        double[] means = ke.getMeans();
                        double[] weights = ke.getWeights();
                        String m = "--";
                        if (ke.getNumKernels() == 0) {
                            m = "" + 0;
                        } else if (j < ke.getNumKernels()) {
                            m = Utils.doubleToString(means[j], maxWidth, 4).trim();
                            m += " (" + Utils.doubleToString(weights[j], maxWidth, 1).trim() + ")";
                        }
                        temp.append(pad(m, " ", maxWidth + 1 - m.length(), true));
                    }
                    temp.append("\n");
                }
                temp.append("\n");
            }

            counter++;
        }
    }

    return temp.toString();
}