List of usage examples for weka.core Instance value
public double value(Attribute att);
From source file:decisiontree.MyID3.java
@Override public double classifyInstance(Instance instance) throws Exception { if (instance.hasMissingValue()) { throw new Exception("Can't handle missing value(s)"); }/*from w w w . j a v a2 s.c om*/ if (splitAttr == null) { if (Utils.eq(leafValue, Double.NaN)) { return instance.value(classAttr); } else { return leafValue; } } else { return child[(int) instance.value(splitAttr)].classifyInstance(instance); } }
From source file:decisiontree.MyID3.java
@Override public double[] distributionForInstance(Instance instance) throws Exception { if (instance.hasMissingValue()) { throw new Exception("Can't handle missing value(s)"); }/* w w w.j ava 2 s. c o m*/ if (splitAttr == null) { return leafDist; } else { return child[(int) instance.value(splitAttr)].distributionForInstance(instance); } }
From source file:decisiontree.MyID3.java
private Instances[] splitData(Instances data, Attribute att) { Instances[] splitData = new Instances[att.numValues()]; for (int j = 0; j < att.numValues(); j++) { splitData[j] = new Instances(data, data.numInstances()); }/*from ww w. j a v a 2 s .co m*/ Enumeration instEnum = data.enumerateInstances(); while (instEnum.hasMoreElements()) { Instance inst = (Instance) instEnum.nextElement(); splitData[(int) inst.value(att)].add(inst); } for (Instances split : splitData) { split.compactify(); } return splitData; }
From source file:dewaweebtreeclassifier.Sujeong.java
public Instances[] splitInstancesOnAttribute(Instances data, Attribute attr) { Instances[] splitInstances = new Instances[attr.numValues()]; for (int i = 0; i < attr.numValues(); i++) { splitInstances[i] = new Instances(data, data.numInstances()); }//from w ww . j av a2s . com Enumeration enumInstance = data.enumerateInstances(); while (enumInstance.hasMoreElements()) { Instance instance = (Instance) enumInstance.nextElement(); splitInstances[(int) instance.value(attr)].add(instance); } for (int i = 0; i < attr.numValues(); i++) { splitInstances[i].compactify(); } return splitInstances; }
From source file:dewaweebtreeclassifier.Sujeong.java
public double classifyInstance(Instance instance) throws java.lang.Exception { if (filter != null) { filter.input(instance);// w w w .j a v a 2s . com instance = filter.output(); } if (bestAttr == null) return this.value; else { return children[(int) instance.value(bestAttr)].classifyInstance(instance); } }
From source file:dewaweebtreeclassifier.veranda.VerandaTree.java
/** * //from w ww. j av a 2 s .c o m * @param instance * @return * @throws java.lang.Exception */ @Override public double classifyInstance(Instance instance) throws Exception { if (mSplitAttribute == null) { return mClassValue; } else { return mChild[(int) instance.value(mSplitAttribute)].classifyInstance(instance); } }
From source file:dewaweebtreeclassifier.veranda.VerandaTree.java
/** * //from w w w . ja v a2s .c o m * @param data * @param attr * @return */ public Instances[] splitInstancesOnAttribute(Instances data, Attribute attr) { Instances[] splitInstances = new Instances[attr.numValues()]; for (int i = 0; i < attr.numValues(); i++) { splitInstances[i] = new Instances(data, data.numInstances()); } Enumeration enumInstance = data.enumerateInstances(); while (enumInstance.hasMoreElements()) { Instance instance = (Instance) enumInstance.nextElement(); splitInstances[(int) instance.value(attr)].add(instance); } for (int i = 0; i < attr.numValues(); i++) { splitInstances[i].compactify(); } return splitInstances; }
From source file:dkpro.similarity.experiments.rte.util.Evaluator.java
License:Open Source License
public static void runClassifierCV(WekaClassifier wekaClassifier, Dataset dataset) throws Exception { // Set parameters int folds = 10; Classifier baseClassifier = ClassifierSimilarityMeasure.getClassifier(wekaClassifier); // Set up the random number generator long seed = new Date().getTime(); Random random = new Random(seed); // Add IDs to the instances AddID.main(new String[] { "-i", MODELS_DIR + "/" + dataset.toString() + ".arff", "-o", MODELS_DIR + "/" + dataset.toString() + "-plusIDs.arff" }); Instances data = DataSource.read(MODELS_DIR + "/" + dataset.toString() + "-plusIDs.arff"); data.setClassIndex(data.numAttributes() - 1); // Instantiate the Remove filter Remove removeIDFilter = new Remove(); removeIDFilter.setAttributeIndices("first"); // Randomize the data data.randomize(random);// w w w .ja va2 s . c o m // Perform cross-validation Instances predictedData = null; Evaluation eval = new Evaluation(data); for (int n = 0; n < folds; n++) { Instances train = data.trainCV(folds, n, random); Instances test = data.testCV(folds, n); // Apply log filter // Filter logFilter = new LogFilter(); // logFilter.setInputFormat(train); // train = Filter.useFilter(train, logFilter); // logFilter.setInputFormat(test); // test = Filter.useFilter(test, logFilter); // Copy the classifier Classifier classifier = AbstractClassifier.makeCopy(baseClassifier); // Instantiate the FilteredClassifier FilteredClassifier filteredClassifier = new FilteredClassifier(); filteredClassifier.setFilter(removeIDFilter); filteredClassifier.setClassifier(classifier); // Build the classifier filteredClassifier.buildClassifier(train); // Evaluate eval.evaluateModel(filteredClassifier, test); // Add predictions AddClassification filter = new AddClassification(); filter.setClassifier(classifier); filter.setOutputClassification(true); filter.setOutputDistribution(false); filter.setOutputErrorFlag(true); filter.setInputFormat(train); Filter.useFilter(train, filter); // trains the classifier Instances pred = Filter.useFilter(test, filter); // performs predictions on test set if (predictedData == null) predictedData = new Instances(pred, 0); for (int j = 0; j < pred.numInstances(); j++) predictedData.add(pred.instance(j)); } System.out.println(eval.toSummaryString()); System.out.println(eval.toMatrixString()); // Prepare output scores String[] scores = new String[predictedData.numInstances()]; for (Instance predInst : predictedData) { int id = new Double(predInst.value(predInst.attribute(0))).intValue() - 1; int valueIdx = predictedData.numAttributes() - 2; String value = predInst.stringValue(predInst.attribute(valueIdx)); scores[id] = value; } // Output classifications StringBuilder sb = new StringBuilder(); for (String score : scores) sb.append(score.toString() + LF); FileUtils.writeStringToFile(new File(OUTPUT_DIR + "/" + dataset.toString() + "/" + wekaClassifier.toString() + "/" + dataset.toString() + ".csv"), sb.toString()); // Output prediction arff DataSink.write(OUTPUT_DIR + "/" + dataset.toString() + "/" + wekaClassifier.toString() + "/" + dataset.toString() + ".predicted.arff", predictedData); // Output meta information sb = new StringBuilder(); sb.append(baseClassifier.toString() + LF); sb.append(eval.toSummaryString() + LF); sb.append(eval.toMatrixString() + LF); FileUtils.writeStringToFile(new File(OUTPUT_DIR + "/" + dataset.toString() + "/" + wekaClassifier.toString() + "/" + dataset.toString() + ".meta.txt"), sb.toString()); }
From source file:dkpro.similarity.experiments.sts2013.filter.LogFilter.java
License:Open Source License
@Override protected Instance process(Instance inst) throws Exception { Instance newInst = new DenseInstance(inst.numAttributes()); newInst.setValue(0, inst.value(0)); for (int i = 1; i < inst.numAttributes() - 1; i++) { double newVal = Math.log(inst.value(i) + 1); newInst.setValue(i, newVal);//from www .ja va 2s .c o m } newInst.setValue(inst.numAttributes() - 1, inst.value(inst.numAttributes() - 1)); return newInst; }
From source file:dkpro.similarity.experiments.sts2013.util.Evaluator.java
License:Open Source License
public static void runLinearRegressionCV(Mode mode, Dataset... datasets) throws Exception { for (Dataset dataset : datasets) { // Set parameters int folds = 10; Classifier baseClassifier = new LinearRegression(); // Set up the random number generator long seed = new Date().getTime(); Random random = new Random(seed); // Add IDs to the instances AddID.main(new String[] { "-i", MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + ".arff", "-o", MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + "-plusIDs.arff" }); Instances data = DataSource.read( MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + "-plusIDs.arff"); data.setClassIndex(data.numAttributes() - 1); // Instantiate the Remove filter Remove removeIDFilter = new Remove(); removeIDFilter.setAttributeIndices("first"); // Randomize the data data.randomize(random);/* w ww . j a v a 2s .c o m*/ // Perform cross-validation Instances predictedData = null; Evaluation eval = new Evaluation(data); for (int n = 0; n < folds; n++) { Instances train = data.trainCV(folds, n, random); Instances test = data.testCV(folds, n); // Apply log filter Filter logFilter = new LogFilter(); logFilter.setInputFormat(train); train = Filter.useFilter(train, logFilter); logFilter.setInputFormat(test); test = Filter.useFilter(test, logFilter); // Copy the classifier Classifier classifier = AbstractClassifier.makeCopy(baseClassifier); // Instantiate the FilteredClassifier FilteredClassifier filteredClassifier = new FilteredClassifier(); filteredClassifier.setFilter(removeIDFilter); filteredClassifier.setClassifier(classifier); // Build the classifier filteredClassifier.buildClassifier(train); // Evaluate eval.evaluateModel(classifier, test); // Add predictions AddClassification filter = new AddClassification(); filter.setClassifier(classifier); filter.setOutputClassification(true); filter.setOutputDistribution(false); filter.setOutputErrorFlag(true); filter.setInputFormat(train); Filter.useFilter(train, filter); // trains the classifier Instances pred = Filter.useFilter(test, filter); // performs predictions on test set if (predictedData == null) { predictedData = new Instances(pred, 0); } for (int j = 0; j < pred.numInstances(); j++) { predictedData.add(pred.instance(j)); } } // Prepare output scores double[] scores = new double[predictedData.numInstances()]; for (Instance predInst : predictedData) { int id = new Double(predInst.value(predInst.attribute(0))).intValue() - 1; int valueIdx = predictedData.numAttributes() - 2; double value = predInst.value(predInst.attribute(valueIdx)); scores[id] = value; // Limit to interval [0;5] if (scores[id] > 5.0) { scores[id] = 5.0; } if (scores[id] < 0.0) { scores[id] = 0.0; } } // Output StringBuilder sb = new StringBuilder(); for (Double score : scores) { sb.append(score.toString() + LF); } FileUtils.writeStringToFile( new File(OUTPUT_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + ".csv"), sb.toString()); } }