Example usage for weka.core Instance setValue

List of usage examples for weka.core Instance setValue

Introduction

In this page you can find the example usage for weka.core Instance setValue.

Prototype

public void setValue(Attribute att, String value);

Source Link

Document

Sets a value of an nominal or string attribute to the given value.

Usage

From source file:csav2.Weka_additive.java

public void classifyTestSet2(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES//  w w w .  j ava2 s.  c  om
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PostiveMatch");
    attr[2] = new Attribute("NegativeMatch");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[3] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(4);
        for (int j = 0; j < 4; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 3)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test2.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(3);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_asAndpolarwords.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(3);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;
        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test2", "txt");
}

From source file:csav2.Weka_additive.java

public void classifyTestSet3(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES//ww w.  ja  v a  2 s  .  co m
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PositiveMatch");
    attr[2] = new Attribute("NegativeMatch");
    attr[3] = new Attribute("FW");
    attr[4] = new Attribute("JJ");
    attr[5] = new Attribute("RB");
    attr[6] = new Attribute("RB_JJ");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[7] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);
    attrs.addElement(attr[4]);
    attrs.addElement(attr[5]);
    attrs.addElement(attr[6]);
    attrs.addElement(attr[7]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(8);
        for (int j = 0; j < 8; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 7)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test3.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(7);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_asAndpolarwordsAndpos.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(7);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;

        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test3", "txt");
}

From source file:csav2.Weka_additive.java

public void classifyTestSet4(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES/*from  w w  w  . ja va2  s  .co  m*/
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PositiveMatch");
    attr[2] = new Attribute("NegativeMatch");
    attr[3] = new Attribute("FW");
    attr[4] = new Attribute("JJ");
    attr[5] = new Attribute("RB");
    attr[6] = new Attribute("RB_JJ");
    attr[7] = new Attribute("amod");
    attr[8] = new Attribute("acomp");
    attr[9] = new Attribute("advmod");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[10] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);
    attrs.addElement(attr[4]);
    attrs.addElement(attr[5]);
    attrs.addElement(attr[6]);
    attrs.addElement(attr[7]);
    attrs.addElement(attr[8]);
    attrs.addElement(attr[9]);
    attrs.addElement(attr[10]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(11);
        for (int j = 0; j < 11; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 10)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test4.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(10);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_asAndpolarwordsAndposAnddep.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(10);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;
        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test4", "txt");
}

From source file:csav2.Weka_additive.java

public void classifyTestSet5(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES/*  w  ww  .  j  a va  2s.com*/
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PositiveMatch");
    attr[2] = new Attribute("NegativeMatch");
    attr[3] = new Attribute("FW");
    attr[4] = new Attribute("JJ");
    attr[5] = new Attribute("RB");
    attr[6] = new Attribute("RB_JJ");
    attr[7] = new Attribute("amod");
    attr[8] = new Attribute("acomp");
    attr[9] = new Attribute("advmod");
    attr[10] = new Attribute("BLPos");
    attr[11] = new Attribute("BLNeg");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[12] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);
    attrs.addElement(attr[4]);
    attrs.addElement(attr[5]);
    attrs.addElement(attr[6]);
    attrs.addElement(attr[7]);
    attrs.addElement(attr[8]);
    attrs.addElement(attr[9]);
    attrs.addElement(attr[10]);
    attrs.addElement(attr[11]);
    attrs.addElement(attr[12]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(13);
        for (int j = 0; j < 13; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 12)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test5.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(12);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_asAndpolarwordsAndposAnddepAndbl.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(12);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;
        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test5", "txt");
}

From source file:csav2.Weka_additive.java

public void classifyTestSet6(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES/*from  ww w . j ava 2 s  .co  m*/
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PositiveMatch");
    attr[2] = new Attribute("NegativeMatch");
    attr[3] = new Attribute("FW");
    attr[4] = new Attribute("JJ");
    attr[5] = new Attribute("RB");
    attr[6] = new Attribute("RB_JJ");
    attr[7] = new Attribute("amod");
    attr[8] = new Attribute("acomp");
    attr[9] = new Attribute("advmod");
    attr[10] = new Attribute("BLPos");
    attr[11] = new Attribute("BLNeg");
    attr[12] = new Attribute("VSPos");
    attr[13] = new Attribute("VSNeg");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[14] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);
    attrs.addElement(attr[4]);
    attrs.addElement(attr[5]);
    attrs.addElement(attr[6]);
    attrs.addElement(attr[7]);
    attrs.addElement(attr[8]);
    attrs.addElement(attr[9]);
    attrs.addElement(attr[10]);
    attrs.addElement(attr[11]);
    attrs.addElement(attr[12]);
    attrs.addElement(attr[13]);
    attrs.addElement(attr[14]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(15);
        for (int j = 0; j < 15; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 14)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test6.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(14);

    //Read classifier back
    String file1 = "Classifier\\classifier_asAndpolarwordsAndposAnddepAndblAndvs.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(14);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;
        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test6", "txt");
}

From source file:cyber009.main.MainSyntacticData.java

public static void main(String[] args) {
    Random r = new Random(System.currentTimeMillis());
    Variable v = new Variable();
    long timeStart = 0, timeEnd = 0;
    ANN ann = new ANN(v, 0.014013);
    for (int f = 2; f <= 2; f++) {
        v.N = f;/* w  w  w .j a v  a  2  s . c o  m*/
        v.D = 4000;
        v.threshold = 0.0;
        cyber009.function.LinearFunction func = new cyber009.function.LinearFunction(v.N);
        v.X = new double[v.D][];
        v.TARGET = new double[v.D];
        v.WEIGHT = new double[v.N + 1];
        for (int d = 0; d < v.D; d++) {
            v.X[d] = new double[v.N + 1];
            v.X[d][0] = 1.0;
            for (int n = 1; n <= v.N; n++) {
                v.X[d][n] = r.nextGaussian();
            }
            v.TARGET[d] = func.syntacticFunction(v.X[d], v.threshold);
        }

        //v.showAll();
        //Lib.Utility.writeCSVDataSet("data/syn_data_x_"+v.N+"_d_"+v.D+".csv", v);

        List<Attribute> atts = new ArrayList<>();
        Attribute[] att = new Attribute[v.N + 2];
        for (int i = 0; i <= v.N; i++) {
            att[i] = new Attribute("X" + i);
            atts.add(att[i]);
        }
        List<String> classValus = new ArrayList<>();
        classValus.add("1.0");
        classValus.add("0.0");
        att[v.N + 1] = new Attribute("class", classValus);
        atts.add(att[v.N + 1]);
        Instances dataSet = new Instances("Syn Data", (ArrayList<Attribute>) atts, v.D);

        for (int d = 0; d < v.D; d++) {
            Instance ins = new DenseInstance(v.N + 2);
            for (int i = 0; i <= v.N; i++) {
                ins.setValue(atts.get(i), v.X[d][i]);
            }
            ins.setValue(atts.get(v.N + 1), v.TARGET[d]);
            dataSet.add(ins);
        }
        //System.out.println(dataSet);
        PlotData2D p2D = new PlotData2D(dataSet);
        p2D.setPlotName("Syn data");
        VisualizePanel vp = new VisualizePanel();
        vp.setName("Show Data");
        try {
            vp.addPlot(p2D);

            JFrame frame = new JFrame("Show Data");
            frame.setSize(600, 600);
            frame.setVisible(true);
            frame.getContentPane().setLayout(new BorderLayout());
            frame.getContentPane().add(vp, BorderLayout.CENTER);
            frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
            frame.setVisible(true);
            func.showCoefficients();
        } catch (Exception ex) {
            Logger.getLogger(MainSyntacticData.class.getName()).log(Level.SEVERE, null, ex);
        }

        ann.weightReset();
        timeStart = System.currentTimeMillis();
        ann.gradientDescent(10000L, 2, v.D);
        timeEnd = System.currentTimeMillis();
        //v.showTable();
        //v.showWEIGHT();
        System.out.println("feature #:" + v.N + " time:(" + (timeEnd - timeStart) + ")");
        v.showResult();
        //func.showCoefficients();
    }
}

From source file:cyber009.main.UDAL.java

public void showData() {
    List<Attribute> atts = new ArrayList<>();
    Attribute[] att = new Attribute[v.N + 2];
    for (int i = 0; i <= v.N; i++) {
        att[i] = new Attribute("X" + i);
        atts.add(att[i]);/*from   ww  w  .j  a va 2 s  . c o m*/
    }
    List<String> classValus = new ArrayList<>();
    classValus.add("1.0");
    classValus.add("0.0");
    att[v.N + 1] = new Attribute("class", classValus);
    atts.add(att[v.N + 1]);
    Instances dataSet = new Instances("Syn Data", (ArrayList<Attribute>) atts, v.D);

    for (int d = 0; d < v.D; d++) {
        Instance ins = new DenseInstance(v.N + 2);
        for (int i = 0; i <= v.N; i++) {
            ins.setValue(atts.get(i), v.X[d][i]);
        }
        ins.setValue(atts.get(v.N + 1), v.TARGET[d]);
        dataSet.add(ins);
    }
    //System.out.println(dataSet);
    PlotData2D p2D = new PlotData2D(dataSet);
    p2D.setPlotName("Syn data");
    VisualizePanel vp = new VisualizePanel();
    vp.setName("Show Data");
    try {
        vp.addPlot(p2D);

        JFrame frame = new JFrame("Show Data");
        frame.setSize(600, 600);
        frame.setVisible(true);
        frame.getContentPane().setLayout(new BorderLayout());
        frame.getContentPane().add(vp, BorderLayout.CENTER);
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        frame.setVisible(true);
        func.showCoefficients();
    } catch (Exception ex) {
        Logger.getLogger(MainSyntacticData.class.getName()).log(Level.SEVERE, null, ex);
    }

}

From source file:cyber009.main.UDALNeuralNetwork.java

public void arraytoInstances() {
    List<Attribute> atts = new ArrayList<>();
    Attribute[] att = new Attribute[v.N + 2];
    for (int i = 0; i <= v.N; i++) {
        att[i] = new Attribute("X" + i);
        atts.add(att[i]);//  w  w w.  j  a va  2s .  com
    }
    List<String> classValus = new ArrayList<>();
    classValus.add("1.0");
    classValus.add("0.0");
    att[v.N + 1] = new Attribute("class", classValus);
    atts.add(att[v.N + 1]);
    dataSet = new Instances("Syn Data", (ArrayList<Attribute>) atts, v.D);
    dataSet.setClass(att[v.N + 1]);
    for (int d = 0; d < v.D; d++) {
        Instance ins = new DenseInstance(v.N + 2);
        for (int i = 0; i <= v.N; i++) {
            ins.setValue(atts.get(i), v.X[d][i]);
        }
        ins.setValue(atts.get(v.N + 1), v.TARGET[d]);
        dataSet.add(ins);
    }

}

From source file:cyber009.udal.functions.LinearFunction.java

/**
 * <p>use for generate Synthetic Dataset</p>
 * @param data /*from  w  ww  .  ja v  a  2  s .  co  m*/
 */
public void generateSyntheticDataset(Variable data) {
    List<Attribute> atts = new ArrayList<>();
    for (int n = 0; n < data.numberOfFeature; n++) {
        atts.add(new Attribute("X" + n));
    }
    List<String> classValus = new ArrayList<>();
    classValus.add("1");
    classValus.add("0");
    atts.add(new Attribute("class", classValus));
    data.unLabelDataSets = new Instances("Syn Data unlabel data set:" + data.numberOfDataset,
            (ArrayList<Attribute>) atts, data.numberOfDataset);
    data.labelDataSets = new Instances("Syn Data label data set:" + data.numberOfDataset,
            (ArrayList<Attribute>) atts, data.numberOfDataset);
    Instance set = null;
    for (int d = 0; d < data.numberOfDataset; d++) {
        set = new DenseInstance(data.numberOfFeature + 1);
        for (int n = 0; n < data.numberOfFeature; n++) {
            set.setValue(n, rand.nextGaussian());
        }
        //set.setValue(data.numberOfFeature, ); // class value empty does not set any thing that put ? unlabel data set
        data.unLabelDataSets.add(set);
    }
    data.unLabelDataSets.setClassIndex(data.numberOfFeature);
}

From source file:cz.vse.fis.keg.entityclassifier.core.salience.EntitySaliencer.java

License:Open Source License

public void computeSalience(List<Entity> entities) {
    try {//from   w w w  .  j a va 2 s . c o m
        if (!initialized) {
            initialize();
            initialized = true;
        }

        ArrayList<SEntity> processedEntities = new ArrayList<SEntity>();

        for (Entity e : entities) {
            SEntity entityMention = new SEntity();
            entityMention.setBeginIndex(e.getStartOffset().intValue());
            entityMention.setEntityType(e.getEntityType());

            ArrayList<Type> types = e.getTypes();
            ArrayList<String> loggedURIs = new ArrayList<String>();

            if (types != null) {
                for (Type t : types) {
                    String entityURI = t.getEntityURI();

                    if (!loggedURIs.contains(entityURI)) {
                        loggedURIs.add(entityURI);
                        entityMention.getUrls().add(entityURI);
                    }
                }
            }

            boolean entityAlreadyLogged = false;

            for (SEntity sEntity : processedEntities) {
                boolean isThisEntitySame = false;
                ArrayList<String> entityURIs1 = sEntity.getUrls();
                ArrayList<String> entityURIs2 = entityMention.getUrls();

                for (String eURI1 : entityURIs1) {
                    for (String eURI2 : entityURIs2) {
                        if (!entityAlreadyLogged) {
                            if (eURI1.equals(eURI2)) {
                                entityAlreadyLogged = true;
                                isThisEntitySame = true;
                                sEntity.setNumOccurrences(sEntity.getNumOccurrences() + 1);
                            }
                        }
                    }
                }

                if (isThisEntitySame) {
                    for (String uri : entityMention.getUrls()) {
                        if (!sEntity.getUrls().contains(uri)) {
                            sEntity.getUrls().add(uri);
                        }
                    }
                }
            }

            // Entity seen for first time in the document.
            if (!entityAlreadyLogged) {
                entityMention.setNumOccurrences(1);
                processedEntities.add(entityMention);
            }
        }

        // Preparing the test data container.
        FastVector attributes = new FastVector(6);
        attributes.add(new Attribute("beginIndex"));
        attributes.add(new Attribute("numUniqueEntitiesInDoc"));
        attributes.add(new Attribute("numOfOccurrencesOfEntityInDoc"));
        attributes.add(new Attribute("numOfEntityMentionsInDoc"));

        FastVector entityTypeNominalAttVal = new FastVector(2);
        entityTypeNominalAttVal.addElement("named_entity");
        entityTypeNominalAttVal.addElement("common_entity");

        Attribute entityTypeAtt = new Attribute("type", entityTypeNominalAttVal);
        attributes.add(entityTypeAtt);
        FastVector classNominalAttVal = new FastVector(3);
        classNominalAttVal.addElement("not_salient");
        classNominalAttVal.addElement("less_salient");
        classNominalAttVal.addElement("most_salient");
        Attribute classAtt = new Attribute("class", classNominalAttVal);
        attributes.add(classAtt);
        Instances evalData = new Instances("MyRelation", attributes, 0);

        evalData.setClassIndex(evalData.numAttributes() - 1);

        for (int i = 0; i < processedEntities.size(); i++) {

            String entityType = "";
            if (processedEntities.get(i).getEntityType().equals("named entity")) {
                entityType = "named_entity";
            } else if (processedEntities.get(i).getEntityType().equals("common entity")) {
                entityType = "common_entity";
            } else {
            }
            Instance inst = new DenseInstance(6);
            inst.setValue(evalData.attribute(0), processedEntities.get(i).getBeginIndex()); // begin index
            inst.setValue(evalData.attribute(1), processedEntities.size()); // num of unique entities in doc
            inst.setValue(evalData.attribute(2), processedEntities.get(i).getNumOccurrences()); // num of entity occurrences in doc
            inst.setValue(evalData.attribute(3), entities.size()); // num of entity mentions in doc
            inst.setValue(evalData.attribute(4), entityType); // type of the entity
            evalData.add(inst);

        }

        for (int i = 0; i < processedEntities.size(); i++) {
            SEntity sEntity = processedEntities.get(i);
            int classIndex = (int) classifier.classifyInstance(evalData.get(i));
            String classLabel = evalData.firstInstance().classAttribute().value(classIndex);
            double pred[] = classifier.distributionForInstance(evalData.get(i));
            double probability = pred[classIndex];

            double salienceScore = pred[1] * 0.5 + pred[2];
            sEntity.setSalienceScore(salienceScore);
            sEntity.setSalienceConfidence(probability);
            sEntity.setSalienceClass(classLabel);

            for (Entity e : entities) {
                ArrayList<Type> types = e.getTypes();
                if (types != null) {
                    for (Type t : types) {
                        if (sEntity.getUrls().contains(t.getEntityURI())) {
                            Salience s = new Salience();
                            s.setClassLabel(classLabel);
                            DecimalFormat df = new DecimalFormat("0.000");
                            double fProbability = df.parse(df.format(probability)).doubleValue();
                            double fSalience = df.parse(df.format(salienceScore)).doubleValue();
                            s.setConfidence(fProbability);
                            s.setScore(fSalience);
                            t.setSalience(s);
                        }
                    }
                }
            }
        }

    } catch (Exception ex) {
        Logger.getLogger(EntitySaliencer.class.getName()).log(Level.SEVERE, null, ex);
    }
}