List of usage examples for weka.core Instance numClasses
public int numClasses();
From source file:tr.gov.ulakbim.jDenetX.classifiers.OzaBoostAdwin.java
License:Open Source License
@Override public void trainOnInstanceImpl(Instance inst) { int numClasses = inst.numClasses(); // Set log (k-1) and (k-1) for SAMME Method if (this.sammeOption.isSet()) { this.Km1 = numClasses - 1; this.logKm1 = Math.log(this.Km1); this.initKm1 = false; }// w w w .ja v a2 s .c o m //Output Codes if (this.initMatrixCodes) { this.matrixCodes = new int[this.ensemble.length][inst.numClasses()]; for (int i = 0; i < this.ensemble.length; i++) { int numberOnes; int numberZeros; do { // until we have the same number of zeros and ones numberOnes = 0; numberZeros = 0; for (int j = 0; j < numClasses; j++) { int result = 0; if (j == 1 && numClasses == 2) { result = 1 - this.matrixCodes[i][0]; } else { result = (this.classifierRandom.nextBoolean() ? 1 : 0); } this.matrixCodes[i][j] = result; if (result == 1) numberOnes++; else numberZeros++; } } while ((numberOnes - numberZeros) * (numberOnes - numberZeros) > (this.ensemble.length % 2)); } this.initMatrixCodes = false; } boolean Change = false; double lambda_d = 1.0; Instance weightedInst = (Instance) inst.copy(); for (int i = 0; i < this.ensemble.length; i++) { double k = this.pureBoostOption.isSet() ? lambda_d : MiscUtils.poisson(lambda_d * this.Km1, this.classifierRandom); if (k > 0.0) { if (this.outputCodesOption.isSet()) { weightedInst.setClassValue((double) this.matrixCodes[i][(int) inst.classValue()]); } weightedInst.setWeight(inst.weight() * k); this.ensemble[i].trainOnInstance(weightedInst); } boolean correctlyClassifies = this.ensemble[i].correctlyClassifies(weightedInst); if (correctlyClassifies) { this.scms[i] += lambda_d; lambda_d *= this.trainingWeightSeenByModel / (2 * this.scms[i]); } else { this.swms[i] += lambda_d; lambda_d *= this.trainingWeightSeenByModel / (2 * this.swms[i]); } double ErrEstim = this.ADError[i].getEstimation(); if (this.ADError[i].setInput(correctlyClassifies ? 0 : 1)) if (this.ADError[i].getEstimation() > ErrEstim) Change = true; } if (Change) { numberOfChangesDetected++; double max = 0.0; int imax = -1; for (int i = 0; i < this.ensemble.length; i++) { if (max < this.ADError[i].getEstimation()) { max = this.ADError[i].getEstimation(); imax = i; } } if (imax != -1) { this.ensemble[imax].resetLearning(); //this.ensemble[imax].trainOnInstance(inst); this.ADError[imax] = new ADWIN((double) this.deltaAdwinOption.getValue()); this.scms[imax] = 0; this.swms[imax] = 0; } } }
From source file:tr.gov.ulakbim.jDenetX.classifiers.OzaBoostAdwin.java
License:Open Source License
public double[] getVotesForInstanceBinary(Instance inst) { double combinedVote[] = new double[(int) inst.numClasses()]; Instance weightedInst = (Instance) inst.copy(); if (this.initMatrixCodes) { for (int i = 0; i < this.ensemble.length; i++) { //Replace class by OC weightedInst.setClassValue((double) this.matrixCodes[i][(int) inst.classValue()]); double vote[]; vote = this.ensemble[i].getVotesForInstance(weightedInst); //Binary Case int voteClass = 0; if (vote.length == 2) { voteClass = (vote[1] > vote[0] ? 1 : 0); }/*from w ww . j a v a 2 s . c om*/ //Update votes for (int j = 0; j < inst.numClasses(); j++) { if (this.matrixCodes[i][j] == voteClass) { combinedVote[j] += getEnsembleMemberWeight(i); } } } } return combinedVote; }
From source file:tr.gov.ulakbim.jDenetX.classifiers.Perceptron.java
License:Open Source License
@Override public void trainOnInstanceImpl(Instance inst) { //Init Perceptron if (this.reset) { this.reset = false; this.numberAttributes = inst.numAttributes(); this.numberClasses = inst.numClasses(); this.weightAttribute = new double[inst.numClasses()][inst.numAttributes()]; for (int i = 0; i < inst.numClasses(); i++) { for (int j = 0; j < inst.numAttributes(); j++) { weightAttribute[i][j] = 0.2 * Math.random() - 0.1; }/* w ww .j av a 2 s .c o m*/ } } double[] preds = new double[inst.numClasses()]; for (int i = 0; i < inst.numClasses(); i++) { preds[i] = prediction(inst, i); } double learningRatio = learningRatioOption.getValue(); int actualClass = (int) inst.classValue(); for (int i = 0; i < inst.numClasses(); i++) { double actual = (i == actualClass) ? 1.0 : 0.0; double delta = (actual - preds[i]) * preds[i] * (1 - preds[i]); for (int j = 0; j < inst.numAttributes() - 1; j++) { this.weightAttribute[i][j] += learningRatio * delta * inst.value(j); } this.weightAttribute[i][inst.numAttributes() - 1] += learningRatio * delta; } }
From source file:tr.gov.ulakbim.jDenetX.classifiers.Perceptron.java
License:Open Source License
@Override public double[] getVotesForInstance(Instance inst) { double[] votes = new double[inst.numClasses()]; if (!this.reset) { for (int i = 0; i < votes.length; i++) { votes[i] = prediction(inst, i); }/*from ww w. jav a2 s .c o m*/ try { weka.core.Utils.normalize(votes); } catch (Exception e) { // ignore all zero votes error } } return votes; }
From source file:xlong.urlclassify.others.LibLINEAR.java
License:Open Source License
/** * Computes the distribution for a given instance. * * @param instance the instance for which distribution is computed * @return the distribution/* www .j a v a 2 s. c o m*/ * @throws Exception if the distribution can't be computed successfully */ public double[] distributionForInstance(Instance instance) throws Exception { if (!getDoNotReplaceMissingValues()) { m_ReplaceMissingValues.input(instance); m_ReplaceMissingValues.batchFinished(); instance = m_ReplaceMissingValues.output(); } if (getConvertNominalToBinary() && m_NominalToBinary != null) { m_NominalToBinary.input(instance); m_NominalToBinary.batchFinished(); instance = m_NominalToBinary.output(); } if (m_Filter != null) { m_Filter.input(instance); m_Filter.batchFinished(); instance = m_Filter.output(); } FeatureNode[] x = instanceToArray(instance); double[] result = new double[instance.numClasses()]; if (m_ProbabilityEstimates) { if (m_SolverType != SolverType.L2R_LR && m_SolverType != SolverType.L2R_LR_DUAL && m_SolverType != SolverType.L1R_LR) { throw new WekaException("probability estimation is currently only " + "supported for L2-regularized logistic regression"); } int[] labels = m_Model.getLabels(); double[] prob_estimates = new double[instance.numClasses()]; Linear.predictProbability(m_Model, x, prob_estimates); // Return order of probabilities to canonical weka attribute order for (int k = 0; k < labels.length; k++) { result[labels[k]] = prob_estimates[k]; } } else { int prediction = Linear.predict(m_Model, x); assert (instance.classAttribute().isNominal()); result[prediction] = 1; } return result; }