Java weka.classifiers.trees RandomForest fields, constructors, methods, implement or subclass

Example usage for Java weka.classifiers.trees RandomForest fields, constructors, methods, implement or subclass

Introduction

In this page you can find the methods, fields and constructors for weka.classifiers.trees RandomForest.

The text is from its open source code.

Constructor

RandomForest()
Constructor that sets base classifier for bagging to RandomTre and default number of iterations to 100.

Method

voidbuildClassifier(Instances data)
Bagging method.
double[]computeAverageImpurityDecreasePerAttribute(double[] nodeCounts)
Computes the average impurity decrease per attribute over the trees
voidmain(String[] argv)
Main method for this class.
voidsetComputeAttributeImportance(boolean computeAttributeImportance)
Set whether to compute and output attribute importance scores
voidsetMaxDepth(int value)
Set the maximum depth of the tree, 0 for unlimited.
voidsetNumExecutionSlots(int numSlots)
Set the number of execution slots (threads) to use for building the members of the ensemble.
voidsetNumFeatures(int newNumFeatures)
Set the number of features to use in random selection.
voidsetNumIterations(int numIterations)
Sets the number of bagging iterations
voidsetOptions(String[] options)
Parses a given list of options.
voidsetSeed(int s)
Sets the seed for the random number generator.
StringtoString()
Returns description of the bagged classifier.