List of usage examples for weka.classifiers.meta Stacking setClassifiers
public void setClassifiers(Classifier[] classifiers)
From source file:com.reactivetechnologies.platform.analytics.core.IncrementalClassifierBean.java
License:Open Source License
@Override public RegressionModel ensembleModels(List<RegressionModel> models) { Stacking blend = new Stacking(); //blend.setMetaClassifier(classifier); Classifier[] classifiers = new Classifier[models.size()]; int i = 0;/* w w w.j a v a 2s.co m*/ for (RegressionModel model : models) { classifiers[i++] = model.getTrainedClassifier(); } blend.setClassifiers(classifiers); RegressionModel m = new RegressionModel(); m.setTrainedClassifier(blend); return m; }
From source file:meddle.TrainModelByDomainOS.java
License:Open Source License
/** * Given the classifierName, return a classifier * * @param classifierName// w ww.j a v a 2s.c om * e.g. J48, Bagging etc. */ public static Classifier getClassifier(String classifierName) { Classifier classifier = null; if (classifierName.equals("J48")) { J48 j48 = new J48(); j48.setUnpruned(true); classifier = j48; } else if (classifierName.equals("AdaBoostM1")) { AdaBoostM1 adm = new AdaBoostM1(); adm.setNumIterations(10); J48 j48 = new J48(); adm.setClassifier(j48); classifier = adm; } else if (classifierName.equals("Bagging")) { Bagging bagging = new Bagging(); bagging.setNumIterations(10); J48 j48 = new J48(); bagging.setClassifier(j48); classifier = bagging; } else if (classifierName.equals("Stacking")) { Stacking stacking = new Stacking(); stacking.setMetaClassifier(new Logistic()); Classifier cc[] = new Classifier[2]; cc[0] = new J48(); cc[1] = new IBk(); stacking.setClassifiers(cc); classifier = stacking; } else if (classifierName.equals("AdditiveRegression")) { AdditiveRegression ar = new AdditiveRegression(); ar.setClassifier(new J48()); classifier = ar; } else if (classifierName.equals("LogitBoost")) { LogitBoost lb = new LogitBoost(); lb.setClassifier(new J48()); classifier = lb; } return classifier; }