List of usage examples for weka.classifiers.functions SMO setToleranceParameter
public void setToleranceParameter(double v)
From source file:org.opentox.qsar.processors.trainers.classification.SVCTrainer.java
License:Open Source License
public QSARModel train(Instances data) throws QSARException { // GET A UUID AND DEFINE THE TEMPORARY FILE WHERE THE TRAINING DATA // ARE STORED IN ARFF FORMAT PRIOR TO TRAINING. final String rand = java.util.UUID.randomUUID().toString(); final String temporaryFilePath = ServerFolders.temp + "/" + rand + ".arff"; final File tempFile = new File(temporaryFilePath); // SAVE THE DATA IN THE TEMPORARY FILE try {//from www . j a va 2 s . c om ArffSaver dataSaver = new ArffSaver(); dataSaver.setInstances(data); dataSaver.setDestination(new FileOutputStream(tempFile)); dataSaver.writeBatch(); if (!tempFile.exists()) { throw new IOException("Temporary File was not created"); } } catch (final IOException ex) {/* * The content of the dataset cannot be * written to the destination file due to * some communication issue. */ tempFile.delete(); throw new RuntimeException( "Unexpected condition while trying to save the " + "dataset in a temporary ARFF file", ex); } // INITIALIZE THE CLASSIFIER SMO classifier = new SMO(); classifier.setEpsilon(0.1); classifier.setToleranceParameter(tolerance); // CONSTRUCT A KERNEL ACCORDING TO THE POSTED PARAMETERS // SUPPORTED KERNELS ARE {rbf, linear, polynomial} Kernel svc_kernel = null; if (this.kernel.equalsIgnoreCase("rbf")) { RBFKernel rbf_kernel = new RBFKernel(); rbf_kernel.setGamma(gamma); rbf_kernel.setCacheSize(cacheSize); svc_kernel = rbf_kernel; } else if (this.kernel.equalsIgnoreCase("polynomial")) { PolyKernel poly_kernel = new PolyKernel(); poly_kernel.setExponent(degree); poly_kernel.setCacheSize(cacheSize); poly_kernel.setUseLowerOrder(true); svc_kernel = poly_kernel; } else if (this.kernel.equalsIgnoreCase("linear")) { PolyKernel linear_kernel = new PolyKernel(); linear_kernel.setExponent((double) 1.0); linear_kernel.setCacheSize(cacheSize); linear_kernel.setUseLowerOrder(true); svc_kernel = linear_kernel; } classifier.setKernel(svc_kernel); String modelFilePath = ServerFolders.models_weka + "/" + uuid.toString(); String[] generalOptions = { "-c", Integer.toString(data.classIndex() + 1), "-t", temporaryFilePath, /// Save the model in the following directory "-d", modelFilePath }; // AFTER ALL, BUILD THE CLASSIFICATION MODEL AND SAVE IT AS A SERIALIZED // WEKA FILE IN THE CORRESPONDING DIRECTORY. try { Evaluation.evaluateModel(classifier, generalOptions); } catch (final Exception ex) { tempFile.delete(); throw new QSARException(Cause.XQReg350, "Unexpected condition while trying to train " + "a support vector classification model. Possible explanation : {" + ex.getMessage() + "}", ex); } ArrayList<Feature> independentFeatures = new ArrayList<Feature>(); for (int i = 0; i < data.numAttributes(); i++) { Feature f = new Feature(data.attribute(i).name()); if (data.classIndex() != i) { independentFeatures.add(f); } } Feature dependentFeature = new Feature(data.classAttribute().name()); Feature predictedFeature = dependentFeature; QSARModel model = new QSARModel(); model.setCode(uuid.toString()); model.setAlgorithm(YaqpAlgorithms.SVC); model.setPredictionFeature(predictedFeature); model.setDependentFeature(dependentFeature); model.setIndependentFeatures(independentFeatures); model.setDataset(datasetUri); model.setParams(getParameters()); model.setModelStatus(ModelStatus.UNDER_DEVELOPMENT); tempFile.delete(); return model; }