List of usage examples for weka.classifiers.functions SGD updateClassifier
@Override public void updateClassifier(Instance instance) throws Exception
From source file:sentinets.Prediction.java
License:Open Source License
public String updateModel(String inputFile, ArrayList<Double[]> metrics) { String output = ""; this.setInstances(inputFile); FilteredClassifier fcls = (FilteredClassifier) this.cls; SGD cls = (SGD) fcls.getClassifier(); Filter filter = fcls.getFilter(); Instances insAll;//from ww w .j a v a 2s . c om try { insAll = Filter.useFilter(this.unlabled, filter); if (insAll.size() > 0) { Random rand = new Random(10); int folds = 10 > insAll.size() ? 2 : 10; Instances randData = new Instances(insAll); randData.randomize(rand); if (randData.classAttribute().isNominal()) { randData.stratify(folds); } Evaluation eval = new Evaluation(randData); eval.evaluateModel(cls, insAll); System.out.println("Initial Evaluation"); System.out.println(eval.toSummaryString()); System.out.println(eval.toClassDetailsString()); metrics.add(new Double[] { eval.fMeasure(0), eval.fMeasure(1), eval.weightedFMeasure() }); output += "\n====" + "Initial Evaluation" + "====\n"; output += "\n" + eval.toSummaryString(); output += "\n" + eval.toClassDetailsString(); System.out.println("Cross Validated Evaluation"); output += "\n====" + "Cross Validated Evaluation" + "====\n"; for (int n = 0; n < folds; n++) { Instances train = randData.trainCV(folds, n); Instances test = randData.testCV(folds, n); for (int i = 0; i < train.numInstances(); i++) { cls.updateClassifier(train.instance(i)); } eval.evaluateModel(cls, test); System.out.println("Cross Validated Evaluation fold: " + n); output += "\n====" + "Cross Validated Evaluation fold (" + n + ")====\n"; System.out.println(eval.toSummaryString()); System.out.println(eval.toClassDetailsString()); output += "\n" + eval.toSummaryString(); output += "\n" + eval.toClassDetailsString(); metrics.add(new Double[] { eval.fMeasure(0), eval.fMeasure(1), eval.weightedFMeasure() }); } for (int i = 0; i < insAll.numInstances(); i++) { cls.updateClassifier(insAll.instance(i)); } eval.evaluateModel(cls, insAll); System.out.println("Final Evaluation"); System.out.println(eval.toSummaryString()); System.out.println(eval.toClassDetailsString()); output += "\n====" + "Final Evaluation" + "====\n"; output += "\n" + eval.toSummaryString(); output += "\n" + eval.toClassDetailsString(); metrics.add(new Double[] { eval.fMeasure(0), eval.fMeasure(1), eval.weightedFMeasure() }); fcls.setClassifier(cls); String modelFilePath = outputDir + "/" + Utils.getOutDir(Utils.OutDirIndex.MODELS) + "/updatedClassifier.model"; weka.core.SerializationHelper.write(modelFilePath, fcls); output += "\n" + "Updated Model saved at: " + modelFilePath; } else { output += "No new instances for training the model."; } } catch (Exception e) { e.printStackTrace(); } return output; }