List of usage examples for weka.classifiers.functions MultilayerPerceptron setAutoBuild
public void setAutoBuild(boolean a)
From source file:cyber009.main.UDALNeuralNetwork.java
public static void main(String[] args) { UDALNeuralNetwork udal = new UDALNeuralNetwork(0.014013); Statistics statis = new Statistics(udal.v); long timeStart = 0, timeEnd = 0; for (int f = 2; f <= 2; f++) { udal.initUDAL(4, 5000);// www . ja v a 2s.c o m udal.activeLearning(0, 5000); udal.arraytoInstances(); udal.ann.weightReset(); timeStart = System.currentTimeMillis(); MultilayerPerceptron wekaNN = new MultilayerPerceptron(); wekaNN.setAutoBuild(true); //wekaNN.setGUI(true); try { wekaNN.buildClassifier(udal.dataSet); Evaluation eval = new Evaluation(udal.dataSet); System.out.println(wekaNN.toString()); eval.crossValidateModel(wekaNN, udal.dataSet, 4999, new Random(System.currentTimeMillis())); System.out.println(wekaNN.toString()); System.out.println(eval.toClassDetailsString()); // udal.ann.gradientDescent(10000L, 3, 100); // for (Double target : udal.v.CLASSES) { // statis.calMVMuSigma(target); // System.out.println(udal.v.N_DATA_IN_CLASS.get(target)); // System.out.println(statis.mu.get(target)); // System.out.println(statis.sigma.get(target)); // } // for(int d=0; d<udal.v.D; d++) { // if(udal.v.LABEL[d] == false) { // double [][] val = new double[udal.v.N-1][1]; // for(int n=1; n<udal.v.N; n++) { // val[n-1][0] = udal.v.X[d][n]; //// System.out.print(udal.v.X[d][n] + " "); //// System.out.println(val[n-1][0]); // } // Matrix mVal = new Matrix(val); // double pp = 0.0D; // for (Double target : udal.v.CLASSES) { // //System.out.println("-----------------------\nClass:"+ target); // pp += statis.posteriorDistribution(target, mVal); // System.out.println("conditional: Entropy: "+ // statis.conditionalEntropy(target, mVal, d)); // } // System.out.print("Sum posterior:"+ pp+ " for "+new Matrix(val).transpose()); // // } // } // System.out.println("-----------------------"); // timeEnd = System.currentTimeMillis(); // System.out.println("feature #:"+udal.v.N+" time:("+ (timeEnd - timeStart) +")"); // udal.v.showResult(); // } catch (Exception ex) { Logger.getLogger(UDALNeuralNetwork.class.getName()).log(Level.SEVERE, null, ex); } } }