Example usage for weka.classifiers.functions Logistic Logistic

List of usage examples for weka.classifiers.functions Logistic Logistic

Introduction

In this page you can find the example usage for weka.classifiers.functions Logistic Logistic.

Prototype

public Logistic() 

Source Link

Document

Constructor that sets the default number of decimal places to 4.

Usage

From source file:ClassifierBuilder.java

public static MyClassifier buildClassifier(String name) {
    MyClassifier toReturn = new MyClassifier(name);
    switch (name) {
    case "Decision Table Majority":
        toReturn.setClassifier(new DecisionTable());
        break;/*from w  ww  .j ava  2s .  c o  m*/
    case "Logistic Regression":
        toReturn.setClassifier(new Logistic());
        break;
    case "Multi Layer Perceptron":
        toReturn.setClassifier(new MultilayerPerceptron());
        break;
    case "Naive Baesian":
        toReturn.setClassifier(new NaiveBayes());
        break;
    case "Random Forest":
        toReturn.setClassifier(new RandomForest());
        break;
    default:
        break;
    }
    return toReturn;
}

From source file:au.edu.usyd.it.yangpy.sampling.BPSO.java

License:Open Source License

/**
 * the target function in fitness form/*from   w  ww.ja  v a  2s .co  m*/
 * 
 * @return   classification accuracy
 */
public double ensembleClassify() {
    double fitnessValue = 0.0;
    double classifiersScore = 0.0;

    /* load in the modified data set */
    try {
        Instances reducedSet = new Instances(new BufferedReader(new FileReader("reduced.arff")));
        reducedSet.setClassIndex(reducedSet.numAttributes() - 1);

        // calculating the evaluation values using each classifier respectively
        if (verbose == true) {
            System.out.println();
            System.out.println(" |----------J4.8-----------|");
            System.out.println(" |            |            |");
        }
        J48 tree = new J48();
        classifiersScore = classify(tree, reducedSet, internalTest);
        fitnessValue += classifiersScore;

        if (verbose == true) {
            System.out.println();
            System.out.println(" |-----3NearestNeighbor----|");
            System.out.println(" |            |            |");
        }
        IBk nn3 = new IBk(3);
        classifiersScore = classify(nn3, reducedSet, internalTest);
        fitnessValue += classifiersScore;

        if (verbose == true) {
            System.out.println();
            System.out.println(" |--------NaiveBayes-------|");
            System.out.println(" |            |            |");
        }
        NaiveBayes nb = new NaiveBayes();
        classifiersScore = classify(nb, reducedSet, internalTest);
        fitnessValue += classifiersScore;

        if (verbose == true) {
            System.out.println();
            System.out.println(" |-------RandomForest------|");
            System.out.println(" |            |            |");
        }
        RandomForest rf5 = new RandomForest();
        rf5.setNumTrees(5);
        classifiersScore = classify(rf5, reducedSet, internalTest);
        fitnessValue += classifiersScore;

        if (verbose == true) {
            System.out.println();
            System.out.println(" |---------Logistic--------|");
            System.out.println(" |            |            |");
        }
        Logistic log = new Logistic();
        classifiersScore = classify(log, reducedSet, internalTest);
        fitnessValue += classifiersScore;

    } catch (IOException ioe) {
        ioe.printStackTrace();
    }

    fitnessValue /= 5;

    if (verbose == true) {
        System.out.println();
        System.out.println("Fitness: " + fitnessValue);
        System.out.println("---------------------------------------------------");
    }

    return fitnessValue;
}

From source file:br.com.ufu.lsi.rebfnetwork.RBFNetwork.java

License:Open Source License

/**
 * Returns default capabilities of the classifier, i.e.,  and "or" of
 * Logistic and LinearRegression.//from  w  w w  .  jav a2  s.c  om
 *
 * @return      the capabilities of this classifier
 * @see         Logistic
 * @see         LinearRegression
 */
public Capabilities getCapabilities() {
    Capabilities result = new Logistic().getCapabilities();
    result.or(new LinearRegression().getCapabilities());
    Capabilities classes = result.getClassCapabilities();
    result.and(new SimpleKMeans().getCapabilities());
    result.or(classes);
    return result;
}

From source file:br.com.ufu.lsi.rebfnetwork.RBFNetwork.java

License:Open Source License

/**
 * Builds the classifier//from   w ww . ja v  a2  s.  c  o m
 *
 * @param instances the training data
 * @throws Exception if the classifier could not be built successfully
 */
public void buildClassifier(Instances instances) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(instances);

    // remove instances with missing class
    instances = new Instances(instances);
    instances.deleteWithMissingClass();

    // only class? -> build ZeroR model
    if (instances.numAttributes() == 1) {
        System.err.println(
                "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!");
        m_ZeroR = new weka.classifiers.rules.ZeroR();
        m_ZeroR.buildClassifier(instances);
        return;
    } else {
        m_ZeroR = null;
    }

    m_standardize = new Standardize();
    m_standardize.setInputFormat(instances);
    instances = Filter.useFilter(instances, m_standardize);

    SimpleKMeans sk = new SimpleKMeans();
    sk.setNumClusters(m_numClusters);
    sk.setSeed(m_clusteringSeed);
    MakeDensityBasedClusterer dc = new MakeDensityBasedClusterer();
    dc.setClusterer(sk);
    dc.setMinStdDev(m_minStdDev);
    m_basisFilter = new ClusterMembership();
    m_basisFilter.setDensityBasedClusterer(dc);
    m_basisFilter.setInputFormat(instances);
    Instances transformed = Filter.useFilter(instances, m_basisFilter);

    if (instances.classAttribute().isNominal()) {
        m_linear = null;
        m_logistic = new Logistic();
        m_logistic.setRidge(m_ridge);
        m_logistic.setMaxIts(m_maxIts);
        m_logistic.buildClassifier(transformed);
    } else {
        m_logistic = null;
        m_linear = new LinearRegression();
        m_linear.setAttributeSelectionMethod(
                new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION));
        m_linear.setRidge(m_ridge);
        m_linear.buildClassifier(transformed);
    }
}

From source file:classify.Classifier.java

/**
 * @param args the command line arguments
 *//*from   ww w.  j  ava 2  s . c  om*/
public static void main(String[] args) {
    //read in data
    try {
        DataSource input = new DataSource("no_missing_values.csv");
        Instances data = input.getDataSet();
        //Instances data = readFile("newfixed.txt");
        missingValuesRows(data);

        setAttributeValues(data);
        data.setClassIndex(data.numAttributes() - 1);

        //boosting
        AdaBoostM1 boosting = new AdaBoostM1();
        boosting.setNumIterations(25);
        boosting.setClassifier(new DecisionStump());

        //build the classifier
        boosting.buildClassifier(data);

        //evaluate using 10-fold cross validation
        Evaluation e1 = new Evaluation(data);
        e1.crossValidateModel(boosting, data, 10, new Random(1));

        DecimalFormat nf = new DecimalFormat("0.000");

        System.out.println("Results of Boosting with Decision Stumps:");
        System.out.println(boosting.toString());
        System.out.println("Results of Cross Validation:");
        System.out.println("Number of correctly classified instances: " + e1.correct() + " ("
                + nf.format(e1.pctCorrect()) + "%)");
        System.out.println("Number of incorrectly classified instances: " + e1.incorrect() + " ("
                + nf.format(e1.pctIncorrect()) + "%)");

        System.out.println("TP Rate: " + nf.format(e1.weightedTruePositiveRate() * 100) + "%");
        System.out.println("FP Rate: " + nf.format(e1.weightedFalsePositiveRate() * 100) + "%");
        System.out.println("Precision: " + nf.format(e1.weightedPrecision() * 100) + "%");
        System.out.println("Recall: " + nf.format(e1.weightedRecall() * 100) + "%");

        System.out.println();
        System.out.println("Confusion Matrix:");
        for (int i = 0; i < e1.confusionMatrix().length; i++) {
            for (int j = 0; j < e1.confusionMatrix()[0].length; j++) {
                System.out.print(e1.confusionMatrix()[i][j] + "   ");
            }
            System.out.println();
        }
        System.out.println();
        System.out.println();
        System.out.println();

        //logistic regression
        Logistic l = new Logistic();
        l.buildClassifier(data);

        e1 = new Evaluation(data);

        e1.crossValidateModel(l, data, 10, new Random(1));
        System.out.println("Results of Logistic Regression:");
        System.out.println(l.toString());
        System.out.println("Results of Cross Validation:");
        System.out.println("Number of correctly classified instances: " + e1.correct() + " ("
                + nf.format(e1.pctCorrect()) + "%)");
        System.out.println("Number of incorrectly classified instances: " + e1.incorrect() + " ("
                + nf.format(e1.pctIncorrect()) + "%)");

        System.out.println("TP Rate: " + nf.format(e1.weightedTruePositiveRate() * 100) + "%");
        System.out.println("FP Rate: " + nf.format(e1.weightedFalsePositiveRate() * 100) + "%");
        System.out.println("Precision: " + nf.format(e1.weightedPrecision() * 100) + "%");
        System.out.println("Recall: " + nf.format(e1.weightedRecall() * 100) + "%");

        System.out.println();
        System.out.println("Confusion Matrix:");
        for (int i = 0; i < e1.confusionMatrix().length; i++) {
            for (int j = 0; j < e1.confusionMatrix()[0].length; j++) {
                System.out.print(e1.confusionMatrix()[i][j] + "   ");
            }
            System.out.println();
        }

    } catch (Exception ex) {
        //data couldn't be read, so end program
        System.out.println("Exception thrown, program ending.");
    }
}

From source file:com.edwardraff.WekaMNIST.java

License:Open Source License

public static void main(String[] args) throws IOException, Exception {
    String folder = args[0];// w w  w  . j  a v a 2  s  .c  om
    String trainPath = folder + "MNISTtrain.arff";
    String testPath = folder + "MNISTtest.arff";

    System.out.println("Weka Timings");
    Instances mnistTrainWeka = new Instances(new BufferedReader(new FileReader(new File(trainPath))));
    mnistTrainWeka.setClassIndex(mnistTrainWeka.numAttributes() - 1);
    Instances mnistTestWeka = new Instances(new BufferedReader(new FileReader(new File(testPath))));
    mnistTestWeka.setClassIndex(mnistTestWeka.numAttributes() - 1);

    //normalize range like into [0, 1]
    Normalize normalizeFilter = new Normalize();
    normalizeFilter.setInputFormat(mnistTrainWeka);

    mnistTestWeka = Normalize.useFilter(mnistTestWeka, normalizeFilter);
    mnistTrainWeka = Normalize.useFilter(mnistTrainWeka, normalizeFilter);

    long start, end;

    System.out.println("RBF SVM (Full Cache)");
    SMO smo = new SMO();
    smo.setKernel(new RBFKernel(mnistTrainWeka, 0/*0 causes Weka to cache the whole matrix...*/, 0.015625));
    smo.setC(8.0);
    smo.setBuildLogisticModels(false);
    evalModel(smo, mnistTrainWeka, mnistTestWeka);

    System.out.println("RBF SVM (No Cache)");
    smo = new SMO();
    smo.setKernel(new RBFKernel(mnistTrainWeka, 1, 0.015625));
    smo.setC(8.0);
    smo.setBuildLogisticModels(false);
    evalModel(smo, mnistTrainWeka, mnistTestWeka);

    System.out.println("Decision Tree C45");
    J48 wekaC45 = new J48();
    wekaC45.setUseLaplace(false);
    wekaC45.setCollapseTree(false);
    wekaC45.setUnpruned(true);
    wekaC45.setMinNumObj(2);
    wekaC45.setUseMDLcorrection(true);

    evalModel(wekaC45, mnistTrainWeka, mnistTestWeka);

    System.out.println("Random Forest 50 trees");
    int featuresToUse = (int) Math.sqrt(28 * 28);//Weka uses different defaults, so lets make sure they both use the published way

    RandomForest wekaRF = new RandomForest();
    wekaRF.setNumExecutionSlots(1);
    wekaRF.setMaxDepth(0/*0 for unlimited*/);
    wekaRF.setNumFeatures(featuresToUse);
    wekaRF.setNumTrees(50);

    evalModel(wekaRF, mnistTrainWeka, mnistTestWeka);

    System.out.println("1-NN (brute)");
    IBk wekaNN = new IBk(1);
    wekaNN.setNearestNeighbourSearchAlgorithm(new LinearNNSearch());
    wekaNN.setCrossValidate(false);

    evalModel(wekaNN, mnistTrainWeka, mnistTestWeka);

    System.out.println("1-NN (Ball Tree)");
    wekaNN = new IBk(1);
    wekaNN.setNearestNeighbourSearchAlgorithm(new BallTree());
    wekaNN.setCrossValidate(false);

    evalModel(wekaNN, mnistTrainWeka, mnistTestWeka);

    System.out.println("1-NN (Cover Tree)");
    wekaNN = new IBk(1);
    wekaNN.setNearestNeighbourSearchAlgorithm(new CoverTree());
    wekaNN.setCrossValidate(false);

    evalModel(wekaNN, mnistTrainWeka, mnistTestWeka);

    System.out.println("Logistic Regression LBFGS lambda = 1e-4");
    Logistic logisticLBFGS = new Logistic();
    logisticLBFGS.setRidge(1e-4);
    logisticLBFGS.setMaxIts(500);

    evalModel(logisticLBFGS, mnistTrainWeka, mnistTestWeka);

    System.out.println("k-means (Loyd)");
    int origClassIndex = mnistTrainWeka.classIndex();
    mnistTrainWeka.setClassIndex(-1);
    mnistTrainWeka.deleteAttributeAt(origClassIndex);
    {
        long totalTime = 0;
        for (int i = 0; i < 10; i++) {
            SimpleKMeans wekaKMeans = new SimpleKMeans();
            wekaKMeans.setNumClusters(10);
            wekaKMeans.setNumExecutionSlots(1);
            wekaKMeans.setFastDistanceCalc(true);

            start = System.currentTimeMillis();
            wekaKMeans.buildClusterer(mnistTrainWeka);
            end = System.currentTimeMillis();
            totalTime += (end - start);
        }
        System.out.println("\tClustering took: " + (totalTime / 10.0) / 1000.0 + " on average");
    }
}

From source file:de.citec.sc.matoll.classifiers.WEKAclassifier.java

public WEKAclassifier(Language language) throws Exception {
    //        this.smo = new SMO();
    //        this.smo.setOptions(weka.core.Utils.splitOptions("-M"));
    //        this.cls = smo; 

    this.log = new Logistic();
    //        this.log.setOptions(weka.core.Utils.splitOptions("-M"));
    this.cls = log;
    this.Language = language;
}

From source file:etc.aloe.oilspill2010.TrainingImpl.java

@Override
public WekaModel train(ExampleSet examples) {
    //These settings aren't terrible
    SMO smo = new SMO();
    RBFKernel rbf = new RBFKernel();
    rbf.setGamma(0.5);/*from   www. j a v a2s  .c  om*/
    smo.setKernel(rbf);
    smo.setC(1.5);

    //These also work pretty ok
    Logistic log = new Logistic();
    log.setRidge(100);

    Classifier classifier = log;

    try {
        System.out.print("Training on " + examples.size() + " examples... ");
        classifier.buildClassifier(examples.getInstances());
        System.out.println("done.");

        WekaModel model = new WekaModel(classifier);
        return model;
    } catch (Exception ex) {
        System.err.println("Unable to train classifier.");
        System.err.println("\t" + ex.getMessage());
        return null;
    }
}

From source file:fr.unice.i3s.rockflows.experiments.main.IntermediateExecutor.java

private List<InfoClassifier> inputClassifier(Dataset original) throws Exception {
    List<InfoClassifier> cls = new ArrayList<>();
    int id = 0;//from w w  w. ja v  a  2  s  . co  m
    //LogisticRegression:
    InfoClassifier ic1 = new InfoClassifier(id++);
    ic1.classifier = new Logistic();
    ic1.name = "Logistic Regression";
    ic1.properties.requireNumericDataset = true;
    cls.add(ic1);
    //SVM:
    InfoClassifier ic2 = new InfoClassifier(id++);
    LibSVM ccc = new LibSVM();
    //disable 
    ccc.setOptions(new String[] { "-J", //Turn off nominal to binary conversion.
            "-V" //Turn off missing value replacement
    });
    //ccc.setSVMType(new SelectedTag(LibSVM.SVMTYPE_C_SVC, LibSVM.TAGS_SVMTYPE));
    //ccc.setKernelType(new SelectedTag(LibSVM.KERNELTYPE_RBF, LibSVM.TAGS_KERNELTYPE));
    //ccc.setEps(0.001); //tolerance
    ic2.classifier = ccc;
    ic2.name = "Svm";
    ic2.properties.requireNumericDataset = true;
    cls.add(ic2);
    //J48:
    InfoClassifier ic3 = new InfoClassifier(id++);
    ic3.classifier = new J48();
    ic3.name = "J48";
    ic3.properties.manageMissingValues = true;
    cls.add(ic3);
    //NBTree:
    InfoClassifier ic4 = new InfoClassifier(id++);
    ic4.classifier = new NBTree();
    ic4.name = "NBTree";
    ic4.properties.manageMissingValues = true;
    cls.add(ic4);
    //RandomForest: 
    InfoClassifier ic5 = new InfoClassifier(id++);
    RandomForest ccc2 = new RandomForest();
    ccc2.setNumTrees(500);
    ccc2.setMaxDepth(0);
    ic5.classifier = ccc2;
    ic5.name = "Random Forest";
    ic5.properties.manageMissingValues = true;
    cls.add(ic5);
    //Logistic Model Trees (LMT):
    InfoClassifier ic6 = new InfoClassifier(id++);
    ic6.classifier = new LMT();
    ic6.name = "Logistic Model Tree";
    ic6.properties.manageMissingValues = true;
    cls.add(ic6);
    //Alternating Decision Trees (ADTree):
    InfoClassifier ic7 = new InfoClassifier(id++);
    if (original.trainingSet.numClasses() > 2) {
        MultiClassClassifier mc = new MultiClassClassifier();
        mc.setOptions(new String[] { "-M", "3" }); //1 vs 1
        mc.setClassifier(new ADTree());
        ic7.classifier = mc;
        ic7.name = "1-vs-1 Alternating Decision Tree";
    } else {
        ic7.classifier = new ADTree();
        ic7.name = "Alternating Decision Tree";
    }
    ic7.properties.manageMultiClass = false;
    ic7.properties.manageMissingValues = true;
    cls.add(ic7);
    //Naive Bayes:
    InfoClassifier ic8 = new InfoClassifier(id++);
    ic8.classifier = new NaiveBayes();
    ic8.name = "Naive Bayes";
    ic8.properties.manageMissingValues = true;
    cls.add(ic8);
    //Bayesian Networks:
    /*
    All Bayes network algorithms implemented in Weka assume the following for the data set: 
    all variables are discrete finite variables. If you have a data set with continuous variables, 
    you can use the following filter to discretize them: 
    weka.filters.unsupervised.attribute.Discretize 
    no instances have missing values. If there are missing values in the data set, 
    values are filled in using the following filter: 
    weka.filters.unsupervised.attribute.ReplaceMissingValues 
            
    The first step performed by buildClassifier is checking if the data set fulfills those assumptions. 
    If those assumptions are not met, 
    the data set is automatically filtered and a warning is written to STDERR.2         
     */
    InfoClassifier ic9 = new InfoClassifier(id++);
    ic9.classifier = new BayesNet();
    ic9.name = "Bayesian Network";
    ic9.properties.requireNominalDataset = true;
    cls.add(ic9);
    //IBK
    InfoClassifier ic10 = new InfoClassifier(id++);
    ic10.classifier = new IBk();
    ic10.name = "IBk";
    ic10.properties.manageMissingValues = true;
    cls.add(ic10);
    //JRip:
    InfoClassifier ic11 = new InfoClassifier(id++);
    ic11.classifier = new JRip();
    ic11.name = "JRip";
    ic11.properties.manageMissingValues = true;
    cls.add(ic11);
    //MultilayerPerceptron(MLP):
    InfoClassifier ic12 = new InfoClassifier(id++);
    ic12.classifier = new MultilayerPerceptron();
    ic12.name = "Multillayer Perceptron";
    ic12.properties.requireNumericDataset = true;
    cls.add(ic12);
    //Bagging RepTree:
    InfoClassifier ic14 = new InfoClassifier(id++);
    REPTree base3 = new REPTree();
    Bagging ccc4 = new Bagging();
    ccc4.setClassifier(base3);
    ic14.classifier = ccc4;
    ic14.name = "Bagging RepTree";
    ic14.properties.manageMissingValues = true;
    cls.add(ic14);
    //Bagging J48
    InfoClassifier ic15 = new InfoClassifier(id++);
    Bagging ccc5 = new Bagging();
    ccc5.setClassifier(new J48());
    ic15.classifier = ccc5;
    ic15.name = "Bagging J48";
    ic15.properties.manageMissingValues = true;
    cls.add(ic15);
    //Bagging NBTree
    InfoClassifier ic16 = new InfoClassifier(id++);
    Bagging ccc6 = new Bagging();
    ccc6.setClassifier(new NBTree());
    ic16.classifier = ccc6;
    ic16.name = "Bagging NBTree";
    ic16.properties.manageMissingValues = true;
    cls.add(ic16);

    //Bagging OneR:
    InfoClassifier ic17 = new InfoClassifier(id++);
    Bagging ccc7 = new Bagging();
    ccc7.setClassifier(new OneR());
    ic17.classifier = ccc7;
    ic17.name = "Bagging OneR";
    ic17.properties.requireNominalDataset = true;
    ic17.properties.manageMissingValues = true;
    cls.add(ic17);
    //Bagging Jrip
    InfoClassifier ic18 = new InfoClassifier(id++);
    Bagging ccc8 = new Bagging();
    ccc8.setClassifier(new JRip());
    ic18.classifier = ccc8;
    ic18.name = "Bagging JRip";
    ic18.properties.manageMissingValues = true;
    cls.add(ic18);
    //MultiboostAB DecisionStump
    InfoClassifier ic24 = new InfoClassifier(id++);
    MultiBoostAB ccc14 = new MultiBoostAB();
    ccc14.setClassifier(new DecisionStump());
    ic24.classifier = ccc14;
    ic24.name = "MultiboostAB DecisionStump";
    ic24.properties.manageMissingValues = true;
    cls.add(ic24);
    //MultiboostAB OneR
    InfoClassifier ic25 = new InfoClassifier(id++);
    MultiBoostAB ccc15 = new MultiBoostAB();
    ccc15.setClassifier(new OneR());
    ic25.classifier = ccc15;
    ic25.name = "MultiboostAB OneR";
    ic25.properties.requireNominalDataset = true;
    cls.add(ic25);
    //MultiboostAB J48
    InfoClassifier ic27 = new InfoClassifier(id++);
    MultiBoostAB ccc17 = new MultiBoostAB();
    ccc17.setClassifier(new J48());
    ic27.classifier = ccc17;
    ic27.name = "MultiboostAB J48";
    ic27.properties.manageMissingValues = true;
    cls.add(ic27);
    //MultiboostAB Jrip
    InfoClassifier ic28 = new InfoClassifier(id++);
    MultiBoostAB ccc18 = new MultiBoostAB();
    ccc18.setClassifier(new JRip());
    ic28.classifier = ccc18;
    ic28.name = "MultiboostAB JRip";
    cls.add(ic28);
    //MultiboostAB NBTree
    InfoClassifier ic29 = new InfoClassifier(id++);
    MultiBoostAB ccc19 = new MultiBoostAB();
    ccc19.setClassifier(new NBTree());
    ic29.classifier = ccc19;
    ic29.name = "MultiboostAB NBTree";
    ic29.properties.manageMissingValues = true;
    cls.add(ic29);
    //RotationForest RandomTree
    InfoClassifier ic32 = new InfoClassifier(id++);
    RotationForest ccc21 = new RotationForest();
    RandomTree rtr5 = new RandomTree();
    rtr5.setMinNum(2);
    rtr5.setAllowUnclassifiedInstances(true);
    ccc21.setClassifier(rtr5);
    ic32.classifier = ccc21;
    ic32.name = "RotationForest RandomTree";
    ic32.properties.manageMissingValues = true;
    cls.add(ic32);
    //RotationForest J48:
    InfoClassifier ic33 = new InfoClassifier(id++);
    J48 base6 = new J48();
    RotationForest ccc22 = new RotationForest();
    ccc22.setClassifier(base6);
    ic33.classifier = ccc22;
    ic33.name = "RotationForest J48";
    ic33.properties.manageMissingValues = true;
    cls.add(ic33);
    //RandomCommittee RandomTree:
    InfoClassifier ic34 = new InfoClassifier(id++);
    RandomTree rtr4 = new RandomTree();
    rtr4.setMinNum(2);
    rtr4.setAllowUnclassifiedInstances(true);
    RandomCommittee ccc23 = new RandomCommittee();
    ccc23.setClassifier(rtr4);
    ic34.classifier = ccc23;
    ic34.name = "RandomComittee RandomTree";
    ic34.properties.manageMissingValues = true;
    cls.add(ic34);
    //Class via Clustering: SimpleKMeans
    //N.B: it can't handle date attributes
    InfoClassifier ic35 = new InfoClassifier(id++);
    ClassificationViaClustering ccc24 = new ClassificationViaClustering();
    SimpleKMeans km = new SimpleKMeans();
    km.setNumClusters(original.trainingSet.numClasses());
    ccc24.setClusterer(km);
    ic35.classifier = ccc24;
    ic35.name = "Classification via Clustering: KMeans";
    ic35.properties.requireNumericDataset = true;
    cls.add(ic35);
    //Class via Clustering: FarthestFirst
    InfoClassifier ic36 = new InfoClassifier(id++);
    ClassificationViaClustering ccc25 = new ClassificationViaClustering();
    FarthestFirst ff = new FarthestFirst();
    ff.setNumClusters(original.trainingSet.numClasses());
    ccc25.setClusterer(ff);
    ic36.classifier = ccc25;
    ic36.name = "Classification via Clustering: FarthestFirst";
    ic36.properties.requireNumericDataset = true;
    cls.add(ic36);
    //SMO
    InfoClassifier ic37 = new InfoClassifier(id++);
    ic37.classifier = new SMO();
    ic37.properties.requireNumericDataset = true;
    ic37.properties.manageMultiClass = false;
    ic37.name = "Smo";
    cls.add(ic37);
    //Random Subspace
    InfoClassifier ic38 = new InfoClassifier(id++);
    RandomSubSpace sub = new RandomSubSpace();
    sub.setClassifier(new REPTree());
    ic38.classifier = sub;
    ic38.name = "Random Subspaces of RepTree";
    ic38.properties.manageMissingValues = true;
    cls.add(ic38);
    //PART rule based
    InfoClassifier ic39 = new InfoClassifier(id++);
    PART p39 = new PART();
    p39.setOptions(new String[] { "-C", "0.5" });
    ic39.classifier = new PART();
    ic39.name = "PART";
    ic39.properties.manageMissingValues = true;
    cls.add(ic39);
    //Decision-Table / Naive Bayes
    InfoClassifier ic40 = new InfoClassifier(id++);
    ic40.classifier = new DTNB();
    ic40.name = "DTNB";
    ic40.properties.manageMissingValues = true;
    cls.add(ic40);
    //Ridor Rule based
    InfoClassifier ic41 = new InfoClassifier(id++);
    ic41.classifier = new Ridor();
    ic41.name = "Ridor";
    ic41.properties.manageMissingValues = true;
    cls.add(ic41);
    //Decision Table
    InfoClassifier ic42 = new InfoClassifier(id++);
    ic42.classifier = new DecisionTable();
    ic42.name = "Decision Table";
    ic42.properties.manageMissingValues = true;
    cls.add(ic42);
    //Conjunctive Rule
    InfoClassifier ic43 = new InfoClassifier(id++);
    ic43.classifier = new ConjunctiveRule();
    ic43.name = "Conjunctive Rule";
    ic43.properties.manageMissingValues = true;
    cls.add(ic43);
    //LogitBoost Decision Stump
    InfoClassifier ic44 = new InfoClassifier(id++);
    LogitBoost lb = new LogitBoost();
    lb.setOptions(new String[] { "-L", "1.79" });
    lb.setClassifier(new DecisionStump());
    ic44.classifier = lb;
    ic44.name = "LogitBoost Decision Stump";
    ic44.properties.manageMissingValues = true;
    cls.add(ic44);
    //Raced Incremental Logit Boost, Decision Stump
    InfoClassifier ic45 = new InfoClassifier(id++);
    RacedIncrementalLogitBoost rlb = new RacedIncrementalLogitBoost();
    rlb.setClassifier(new DecisionStump());
    ic45.classifier = rlb;
    ic45.name = "Raced Incremental Logit Boost, Decision Stumps";
    ic45.properties.manageMissingValues = true;
    cls.add(ic45);
    //AdaboostM1 decision stump
    InfoClassifier ic46 = new InfoClassifier(id++);
    AdaBoostM1 adm = new AdaBoostM1();
    adm.setClassifier(new DecisionStump());
    ic46.classifier = adm;
    ic46.name = "AdaboostM1, Decision Stumps";
    ic46.properties.manageMissingValues = true;
    cls.add(ic46);
    //AdaboostM1 J48
    InfoClassifier ic47 = new InfoClassifier(id++);
    AdaBoostM1 adm2 = new AdaBoostM1();
    adm2.setClassifier(new J48());
    ic47.classifier = adm2;
    ic47.name = "AdaboostM1, J48";
    ic47.properties.manageMissingValues = true;
    cls.add(ic47);
    //MultiboostAb Decision Table
    InfoClassifier ic48 = new InfoClassifier(id++);
    MultiBoostAB mba = new MultiBoostAB();
    mba.setClassifier(new DecisionTable());
    ic48.classifier = mba;
    ic48.name = "MultiboostAB, Decision Table";
    ic48.properties.manageMissingValues = true;
    cls.add(ic48);
    //Multiboost NaiveBayes
    InfoClassifier ic49 = new InfoClassifier(id++);
    MultiBoostAB mba2 = new MultiBoostAB();
    mba2.setClassifier(new NaiveBayes());
    ic49.classifier = mba2;
    ic49.name = "MultiboostAB, Naive Bayes";
    ic49.properties.manageMissingValues = true;
    cls.add(ic49);
    //Multiboost PART
    InfoClassifier ic50 = new InfoClassifier(id++);
    MultiBoostAB mba3 = new MultiBoostAB();
    mba3.setClassifier(new PART());
    ic50.classifier = mba3;
    ic50.name = "MultiboostAB, PART";
    ic50.properties.manageMissingValues = true;
    cls.add(ic50);
    //Multiboost Random Tree
    InfoClassifier ic51 = new InfoClassifier(id++);
    MultiBoostAB mba4 = new MultiBoostAB();
    RandomTree rtr3 = new RandomTree();
    rtr3.setMinNum(2);
    rtr3.setAllowUnclassifiedInstances(true);
    mba4.setClassifier(rtr3);
    ic51.classifier = mba4;
    ic51.name = "MultiboostAB, RandomTree";
    ic51.properties.manageMissingValues = true;
    cls.add(ic51);
    //Multiboost Rep Tree
    InfoClassifier ic52 = new InfoClassifier(id++);
    MultiBoostAB mba5 = new MultiBoostAB();
    mba5.setClassifier(new REPTree());
    ic52.classifier = mba5;
    ic52.name = "MultiboostAB, RepTree";
    ic52.properties.manageMissingValues = true;
    cls.add(ic52);
    //Bagging Decision Stump
    InfoClassifier ic53 = new InfoClassifier(id++);
    Bagging bag = new Bagging();
    bag.setClassifier(new DecisionStump());
    ic53.classifier = bag;
    ic53.name = "Bagging Decision Stump";
    ic53.properties.manageMissingValues = true;
    cls.add(ic53);
    //Bagging Decision Table
    InfoClassifier ic54 = new InfoClassifier(id++);
    Bagging bag1 = new Bagging();
    bag1.setClassifier(new DecisionTable());
    ic54.classifier = bag1;
    ic54.name = "Bagging Decision Table";
    ic54.properties.manageMissingValues = true;
    cls.add(ic54);
    //Bagging HyperPipes
    InfoClassifier ic55 = new InfoClassifier(id++);
    Bagging bag2 = new Bagging();
    bag2.setClassifier(new HyperPipes());
    ic55.classifier = bag2;
    ic55.name = "Bagging Hyper Pipes";
    cls.add(ic55);
    //Bagging Naive Bayes
    InfoClassifier ic56 = new InfoClassifier(id++);
    Bagging bag3 = new Bagging();
    bag3.setClassifier(new NaiveBayes());
    ic56.classifier = bag3;
    ic56.name = "Bagging Naive Bayes";
    ic56.properties.manageMissingValues = true;
    cls.add(ic56);
    //Bagging PART
    InfoClassifier ic57 = new InfoClassifier(id++);
    Bagging bag4 = new Bagging();
    bag4.setClassifier(new PART());
    ic57.classifier = bag4;
    ic57.name = "Bagging PART";
    ic57.properties.manageMissingValues = true;
    cls.add(ic57);
    //Bagging RandomTree
    InfoClassifier ic58 = new InfoClassifier(id++);
    Bagging bag5 = new Bagging();
    RandomTree rtr2 = new RandomTree();
    rtr2.setMinNum(2);
    rtr2.setAllowUnclassifiedInstances(true);
    bag5.setClassifier(rtr2);
    ic58.classifier = bag5;
    ic58.name = "Bagging RandomTree";
    ic58.properties.manageMissingValues = true;
    cls.add(ic58);
    //NNge
    InfoClassifier ic59 = new InfoClassifier(id++);
    NNge nng = new NNge();
    nng.setNumFoldersMIOption(1);
    nng.setNumAttemptsOfGeneOption(5);
    ic59.classifier = nng;
    ic59.name = "NNge";
    cls.add(ic59);
    //OrdinalClassClassifier J48
    InfoClassifier ic60 = new InfoClassifier(id++);
    OrdinalClassClassifier occ = new OrdinalClassClassifier();
    occ.setClassifier(new J48());
    ic60.classifier = occ;
    ic60.name = "OrdinalClassClassifier J48";
    ic60.properties.manageMissingValues = true;
    cls.add(ic60);
    //Hyper Pipes
    InfoClassifier ic61 = new InfoClassifier(id++);
    ic61.classifier = new HyperPipes();
    ic61.name = "Hyper Pipes";
    cls.add(ic61);
    //Classification via Regression, M5P used by default
    InfoClassifier ic62 = new InfoClassifier(id++);
    ic62.classifier = new ClassificationViaRegression();
    ic62.name = "Classification ViaRegression, M5P";
    ic62.properties.requireNumericDataset = true;
    cls.add(ic62);
    //RBF Network
    InfoClassifier ic64 = new InfoClassifier(id++);
    RBFNetwork rbf = new RBFNetwork();
    rbf.setRidge(0.00000001); //10^-8
    rbf.setNumClusters(original.trainingSet.numAttributes() / 2);
    ic64.classifier = rbf;
    ic64.name = "RBF Network";
    ic64.properties.requireNumericDataset = true;
    if (!original.properties.isStandardized) {
        ic64.properties.compatibleWithDataset = false;
    }
    cls.add(ic64);
    //RandomTree
    InfoClassifier ic66 = new InfoClassifier(id++);
    RandomTree rtr = new RandomTree();
    rtr.setMinNum(2);
    rtr.setAllowUnclassifiedInstances(true);
    ic66.classifier = rtr;
    ic66.name = "Random Tree";
    ic66.properties.manageMissingValues = true;
    cls.add(ic66);
    //RepTree
    InfoClassifier ic67 = new InfoClassifier(id++);
    REPTree rept = new REPTree();
    ic67.classifier = rept;
    ic67.name = "Rep Tree";
    ic67.properties.manageMissingValues = true;
    cls.add(ic67);
    //Decision Stump
    InfoClassifier ic68 = new InfoClassifier(id++);
    ic68.classifier = new DecisionStump();
    ic68.name = "Decision Stump";
    ic68.properties.manageMissingValues = true;
    cls.add(ic68);
    //OneR
    InfoClassifier ic69 = new InfoClassifier(id++);
    ic69.classifier = new OneR();
    ic69.name = "OneR";
    ic69.properties.requireNominalDataset = true;
    ic69.properties.manageMissingValues = true;
    cls.add(ic69);
    //LWL
    InfoClassifier ic71 = new InfoClassifier(id++);
    ic71.classifier = new LWL();
    ic71.name = "LWL";
    ic71.properties.manageMissingValues = true;
    cls.add(ic71);
    //Bagging LWL
    InfoClassifier ic72 = new InfoClassifier(id++);
    Bagging bg72 = new Bagging();
    bg72.setClassifier(new LWL());
    ic72.classifier = bg72;
    ic72.name = "Bagging LWL";
    ic72.properties.manageMissingValues = true;
    cls.add(ic72);
    //Decorate
    InfoClassifier ic73 = new InfoClassifier(id++);
    ic73.classifier = new Decorate();
    ic73.name = "Decorate";
    ic73.properties.manageMissingValues = true;
    ic73.properties.minNumTrainingInstances = 15;
    this.indexDecorate = id - 1;
    cls.add(ic73);
    //Dagging
    InfoClassifier ic74 = new InfoClassifier(id++);
    Dagging dng = new Dagging();
    dng.setClassifier(new SMO());
    dng.setNumFolds(4);
    ic74.classifier = dng;
    ic74.properties.requireNumericDataset = true;
    ic74.properties.manageMultiClass = false;
    ic74.name = "Dagging SMO";
    cls.add(ic74);
    //IB1
    InfoClassifier ic75 = new InfoClassifier(id++);
    ic75.classifier = new IB1();
    ic75.properties.manageMissingValues = true;
    ic75.name = "IB1";
    cls.add(ic75);
    //Simple Logistic
    InfoClassifier ic76 = new InfoClassifier(id++);
    ic76.classifier = new SimpleLogistic();
    ic76.properties.requireNumericDataset = true;
    ic76.name = "Simple Logistic";
    cls.add(ic76);
    //VFI
    InfoClassifier ic77 = new InfoClassifier(id++);
    ic77.classifier = new VFI();
    ic77.properties.manageMissingValues = true;
    ic77.name = "VFI";
    cls.add(ic77);

    //check if classifier satisfies the constraints of min #instances
    checkMinNumInstanes(cls, original.trainingSet);

    return cls;
}

From source file:jjj.asap.sas.models1.job.BuildBasicModels2.java

License:Open Source License

@Override
protected void run() throws Exception {

    // validate args
    if (!Bucket.isBucket("datasets", inputBucket)) {
        throw new FileNotFoundException(inputBucket);
    }//ww w.  ja  va  2  s .  co m
    if (!Bucket.isBucket("models", outputBucket)) {
        throw new FileNotFoundException(outputBucket);
    }

    // create prototype classifiers
    Map<String, Classifier> prototypes = new HashMap<String, Classifier>();

    // models

    prototypes.put("NBTree", new NBTree());
    prototypes.put("Logistic", new Logistic());

    // init multi-threading
    Job.startService();
    final Queue<Future<Object>> queue = new LinkedList<Future<Object>>();

    // get the input from the bucket
    List<String> names = Bucket.getBucketItems("datasets", this.inputBucket);
    for (String dsn : names) {

        // for each prototype classifier
        for (Map.Entry<String, Classifier> prototype : prototypes.entrySet()) {

            // use InfoGain to discard useless attributes

            AttributeSelectedClassifier classifier = new AttributeSelectedClassifier();

            classifier.setEvaluator(new InfoGainAttributeEval());

            Ranker ranker = new Ranker();
            ranker.setThreshold(0.0001);
            classifier.setSearch(ranker);

            classifier.setClassifier(AbstractClassifier.makeCopy(prototype.getValue()));

            queue.add(Job.submit(
                    new ModelBuilder(dsn, "InfoGain-" + prototype.getKey(), classifier, this.outputBucket)));
        }
    }

    // wait on complete
    Progress progress = new Progress(queue.size(), this.getClass().getSimpleName());
    while (!queue.isEmpty()) {
        try {
            queue.remove().get();
        } catch (Exception e) {
            Job.log("ERROR", e.toString());
        }
        progress.tick();
    }
    progress.done();
    Job.stopService();

}