List of usage examples for weka.classifiers.functions LinearRegression SELECTION_NONE
int SELECTION_NONE
To view the source code for weka.classifiers.functions LinearRegression SELECTION_NONE.
Click Source Link
From source file:br.com.ufu.lsi.rebfnetwork.RBFNetwork.java
License:Open Source License
/** * Builds the classifier/* w w w .j a v a 2 s.c o m*/ * * @param instances the training data * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); // only class? -> build ZeroR model if (instances.numAttributes() == 1) { System.err.println( "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(instances); return; } else { m_ZeroR = null; } m_standardize = new Standardize(); m_standardize.setInputFormat(instances); instances = Filter.useFilter(instances, m_standardize); SimpleKMeans sk = new SimpleKMeans(); sk.setNumClusters(m_numClusters); sk.setSeed(m_clusteringSeed); MakeDensityBasedClusterer dc = new MakeDensityBasedClusterer(); dc.setClusterer(sk); dc.setMinStdDev(m_minStdDev); m_basisFilter = new ClusterMembership(); m_basisFilter.setDensityBasedClusterer(dc); m_basisFilter.setInputFormat(instances); Instances transformed = Filter.useFilter(instances, m_basisFilter); if (instances.classAttribute().isNominal()) { m_linear = null; m_logistic = new Logistic(); m_logistic.setRidge(m_ridge); m_logistic.setMaxIts(m_maxIts); m_logistic.buildClassifier(transformed); } else { m_logistic = null; m_linear = new LinearRegression(); m_linear.setAttributeSelectionMethod( new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION)); m_linear.setRidge(m_ridge); m_linear.buildClassifier(transformed); } }
From source file:edu.utexas.cs.tactex.utils.RegressionUtils.java
License:Open Source License
public static LinearRegression createLinearRegression() { LinearRegression linreg = new LinearRegression(); linreg.setAttributeSelectionMethod(//from w w w .ja v a 2 s.c o m new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION)); linreg.setEliminateColinearAttributes(false); // if wants debug info //linreg.setDebug(true); return linreg; }
From source file:wekimini.learning.LinearRegressionModelBuilder.java
public LinearRegressionModelBuilder() { classifier = new LinearRegression(); featureSelectionType = FeatureSelectionType.NONE; ((LinearRegression) classifier).setAttributeSelectionMethod( new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION)); ((LinearRegression) classifier).setEliminateColinearAttributes(removeColinear); }
From source file:wekimini.learning.LinearRegressionModelBuilder.java
public void setFeatureSelectionType(FeatureSelectionType newType) { featureSelectionType = newType;/* w w w. jav a 2 s . c om*/ switch (newType) { case NONE: ((LinearRegression) classifier).setAttributeSelectionMethod( new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION)); break; case M5: ((LinearRegression) classifier).setAttributeSelectionMethod( new SelectedTag(LinearRegression.SELECTION_M5, LinearRegression.TAGS_SELECTION)); break; case GREEDY: default: ((LinearRegression) classifier).setAttributeSelectionMethod( new SelectedTag(LinearRegression.SELECTION_GREEDY, LinearRegression.TAGS_SELECTION)); } }