Example usage for Java weka.classifiers.functions LibSVM fields, constructors, methods, implement or subclass
The text is from its open source code.
int | SVMTYPE_C_SVC SVM type C-SVC (classification). |
int | SVMTYPE_NU_SVC SVM type nu-SVC (classification). |
int | SVMTYPE_ONE_CLASS_SVM SVM type one-class SVM (classification). |
int | SVMTYPE_EPSILON_SVR SVM type epsilon-SVR (regression). |
int | SVMTYPE_NU_SVR SVM type nu-SVR (regression). |
Tag[] | TAGS_SVMTYPE SVM types. |
int | KERNELTYPE_LINEAR kernel type linear: u'*v. |
int | KERNELTYPE_POLYNOMIAL kernel type polynomial: (gamma*u'*v + coef0)^degree. |
int | KERNELTYPE_RBF kernel type radial basis function: exp(-gamma*|u-v|^2). |
int | KERNELTYPE_SIGMOID kernel type sigmoid: tanh(gamma*u'*v + coef0). |
Tag[] | TAGS_KERNELTYPE the different kernel types. |
void | buildClassifier(Instances insts) builds the classifier. |
void | setCacheSize(double value) Sets cache memory size in MB (default 40). |
void | setCoef0(double value) Sets coef (default 0). |
void | setCost(double value) Sets the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1). |
void | setDegree(int value) Sets the degree of the kernel. |
void | setEps(double value) Sets tolerance of termination criterion (default 0.001). |
void | setGamma(double value) Sets gamma (default = 1/no of attributes). |
void | setKernelType(SelectedTag value) Sets type of kernel function (default KERNELTYPE_RBF). |
void | setLoss(double value) Sets the epsilon in loss function of epsilon-SVR (default 0.1). |
void | setNormalize(boolean value) whether to normalize input data. |
void | setNu(double value) Sets nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5). |
void | setOptions(String[] options) Sets the classifier options Valid options are: -S <int> Set type of SVM (default: 0) 0 = C-SVC 1 = nu-SVC 2 = one-class SVM 3 = epsilon-SVR 4 = nu-SVR -K <int> Set type of kernel function (default: 2) 0 = linear: u'*v 1 = polynomial: (gamma*u'*v + coef0)^degree 2 = radial basis function: exp(-gamma*|u-v|^2) 3 = sigmoid: tanh(gamma*u'*v + coef0) -D <int> Set degree in kernel function (default: 3) -G <double> Set gamma in kernel function (default: 1/k) -R <double> Set coef0 in kernel function (default: 0) -C <double> Set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default: 1) -N <double> Set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default: 0.5) -Z Turns on normalization of input data (default: off) -J Turn off nominal to binary conversion. |
void | setShrinking(boolean value) whether to use the shrinking heuristics. |
void | setSVMType(SelectedTag value) Sets type of SVM (default SVMTYPE_C_SVC). |