List of usage examples for weka.classifiers Evaluation weightedRecall
public double weightedRecall()
From source file:csav2.Weka_additive.java
public void classifyTestSet1(String input) throws Exception { String ids = ""; ReaderWriter rw = new ReaderWriter(); //ATTRIBUTES/* w w w.j av a 2 s .c om*/ Attribute attr[] = new Attribute[50]; //numeric attr[0] = new Attribute("Autosentiment"); //class FastVector classValue = new FastVector(3); classValue.addElement("p"); classValue.addElement("n"); classValue.addElement("o"); attr[1] = new Attribute("answer", classValue); FastVector attrs = new FastVector(); attrs.addElement(attr[0]); attrs.addElement(attr[1]); // Add Instances Instances dataset = new Instances("my_dataset", attrs, 0); StringTokenizer tokenizer = new StringTokenizer(input); while (tokenizer.hasMoreTokens()) { Instance example = new Instance(2); for (int j = 0; j < 2; j++) { String st = tokenizer.nextToken(); System.out.println(j + " " + st); if (j == 0) example.setValue(attr[j], Float.parseFloat(st)); else if (j == 1) example.setValue(attr[j], st); else example.setValue(attr[j], Integer.parseInt(st)); } ids += tokenizer.nextToken() + "\t"; dataset.add(example); } //Save dataset String file = "Classifier\\featurefile_additive_test1.arff"; ArffSaver saver = new ArffSaver(); saver.setInstances(dataset); saver.setFile(new File(file)); saver.writeBatch(); //Read dataset ArffLoader loader = new ArffLoader(); loader.setFile(new File(file)); dataset = loader.getDataSet(); //Build classifier dataset.setClassIndex(1); //Read classifier back String file1 = "Classifier\\classifier_add_autosentiment.model"; InputStream is = new FileInputStream(file1); Classifier classifier; ObjectInputStream objectInputStream = new ObjectInputStream(is); classifier = (Classifier) objectInputStream.readObject(); //Evaluate Instances test = new Instances(dataset, 0, dataset.numInstances()); test.setClassIndex(1); //Do eval Evaluation eval = new Evaluation(test); //trainset eval.evaluateModel(classifier, test); //testset System.out.println(eval.toSummaryString()); System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure()); System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision()); System.out.println("WEIGHTED RECALL:" + eval.weightedRecall()); //output predictions String optest = "", val = ""; StringTokenizer op = new StringTokenizer(ids); int count = 0; while (op.hasMoreTokens()) { double[] prediction = classifier.distributionForInstance(test.instance(count)); count += 1; //optest+=op.nextToken()+" "+Double.toString((double) Math.round((prediction[0]) * 1000) / 1000)+"\n"; if (prediction[0] > prediction[1]) { if (prediction[0] > prediction[2]) { val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } else { if (prediction[1] > prediction[2]) { val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } optest += op.nextToken() + "\t" + val + "\n"; } rw.writeToFile(optest, "Answers_additive_Test1", "txt"); }
From source file:csav2.Weka_additive.java
public void classifyTestSet2(String input) throws Exception { String ids = ""; ReaderWriter rw = new ReaderWriter(); //ATTRIBUTES/*www . j a v a2s . c om*/ Attribute attr[] = new Attribute[50]; //numeric attr[0] = new Attribute("Autosentiment"); attr[1] = new Attribute("PostiveMatch"); attr[2] = new Attribute("NegativeMatch"); //class FastVector classValue = new FastVector(3); classValue.addElement("p"); classValue.addElement("n"); classValue.addElement("o"); attr[3] = new Attribute("answer", classValue); FastVector attrs = new FastVector(); attrs.addElement(attr[0]); attrs.addElement(attr[1]); attrs.addElement(attr[2]); attrs.addElement(attr[3]); // Add Instances Instances dataset = new Instances("my_dataset", attrs, 0); StringTokenizer tokenizer = new StringTokenizer(input); while (tokenizer.hasMoreTokens()) { Instance example = new Instance(4); for (int j = 0; j < 4; j++) { String st = tokenizer.nextToken(); System.out.println(j + " " + st); if (j == 0) example.setValue(attr[j], Float.parseFloat(st)); else if (j == 3) example.setValue(attr[j], st); else example.setValue(attr[j], Integer.parseInt(st)); } ids += tokenizer.nextToken() + "\t"; dataset.add(example); } //Save dataset String file = "Classifier\\featurefile_additive_test2.arff"; ArffSaver saver = new ArffSaver(); saver.setInstances(dataset); saver.setFile(new File(file)); saver.writeBatch(); //Read dataset ArffLoader loader = new ArffLoader(); loader.setFile(new File(file)); dataset = loader.getDataSet(); //Build classifier dataset.setClassIndex(3); //Read classifier back String file1 = "Classifier\\classifier_add_asAndpolarwords.model"; InputStream is = new FileInputStream(file1); Classifier classifier; ObjectInputStream objectInputStream = new ObjectInputStream(is); classifier = (Classifier) objectInputStream.readObject(); //Evaluate Instances test = new Instances(dataset, 0, dataset.numInstances()); test.setClassIndex(3); //Do eval Evaluation eval = new Evaluation(test); //trainset eval.evaluateModel(classifier, test); //testset System.out.println(eval.toSummaryString()); System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure()); System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision()); System.out.println("WEIGHTED RECALL:" + eval.weightedRecall()); //output predictions String optest = "", val = ""; StringTokenizer op = new StringTokenizer(ids); int count = 0; while (op.hasMoreTokens()) { double[] prediction = classifier.distributionForInstance(test.instance(count)); count += 1; if (prediction[0] > prediction[1]) { if (prediction[0] > prediction[2]) { val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } else { if (prediction[1] > prediction[2]) { val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } optest += op.nextToken() + "\t" + val + "\n"; } rw.writeToFile(optest, "Answers_additive_Test2", "txt"); }
From source file:csav2.Weka_additive.java
public void classifyTestSet3(String input) throws Exception { String ids = ""; ReaderWriter rw = new ReaderWriter(); //ATTRIBUTES//from w w w . ja va 2s . com Attribute attr[] = new Attribute[50]; //numeric attr[0] = new Attribute("Autosentiment"); attr[1] = new Attribute("PositiveMatch"); attr[2] = new Attribute("NegativeMatch"); attr[3] = new Attribute("FW"); attr[4] = new Attribute("JJ"); attr[5] = new Attribute("RB"); attr[6] = new Attribute("RB_JJ"); //class FastVector classValue = new FastVector(3); classValue.addElement("p"); classValue.addElement("n"); classValue.addElement("o"); attr[7] = new Attribute("answer", classValue); FastVector attrs = new FastVector(); attrs.addElement(attr[0]); attrs.addElement(attr[1]); attrs.addElement(attr[2]); attrs.addElement(attr[3]); attrs.addElement(attr[4]); attrs.addElement(attr[5]); attrs.addElement(attr[6]); attrs.addElement(attr[7]); // Add Instances Instances dataset = new Instances("my_dataset", attrs, 0); StringTokenizer tokenizer = new StringTokenizer(input); while (tokenizer.hasMoreTokens()) { Instance example = new Instance(8); for (int j = 0; j < 8; j++) { String st = tokenizer.nextToken(); System.out.println(j + " " + st); if (j == 0) example.setValue(attr[j], Float.parseFloat(st)); else if (j == 7) example.setValue(attr[j], st); else example.setValue(attr[j], Integer.parseInt(st)); } ids += tokenizer.nextToken() + "\t"; dataset.add(example); } //Save dataset String file = "Classifier\\featurefile_additive_test3.arff"; ArffSaver saver = new ArffSaver(); saver.setInstances(dataset); saver.setFile(new File(file)); saver.writeBatch(); //Read dataset ArffLoader loader = new ArffLoader(); loader.setFile(new File(file)); dataset = loader.getDataSet(); //Build classifier dataset.setClassIndex(7); //Read classifier back String file1 = "Classifier\\classifier_add_asAndpolarwordsAndpos.model"; InputStream is = new FileInputStream(file1); Classifier classifier; ObjectInputStream objectInputStream = new ObjectInputStream(is); classifier = (Classifier) objectInputStream.readObject(); //Evaluate Instances test = new Instances(dataset, 0, dataset.numInstances()); test.setClassIndex(7); //Do eval Evaluation eval = new Evaluation(test); //trainset eval.evaluateModel(classifier, test); //testset System.out.println(eval.toSummaryString()); System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure()); System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision()); System.out.println("WEIGHTED RECALL:" + eval.weightedRecall()); //output predictions String optest = "", val = ""; StringTokenizer op = new StringTokenizer(ids); int count = 0; while (op.hasMoreTokens()) { double[] prediction = classifier.distributionForInstance(test.instance(count)); count += 1; if (prediction[0] > prediction[1]) { if (prediction[0] > prediction[2]) { val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } else { if (prediction[1] > prediction[2]) { val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } optest += op.nextToken() + "\t" + val + "\n"; } rw.writeToFile(optest, "Answers_additive_Test3", "txt"); }
From source file:csav2.Weka_additive.java
public void classifyTestSet4(String input) throws Exception { String ids = ""; ReaderWriter rw = new ReaderWriter(); //ATTRIBUTES//from w w w .j av a 2 s. co m Attribute attr[] = new Attribute[50]; //numeric attr[0] = new Attribute("Autosentiment"); attr[1] = new Attribute("PositiveMatch"); attr[2] = new Attribute("NegativeMatch"); attr[3] = new Attribute("FW"); attr[4] = new Attribute("JJ"); attr[5] = new Attribute("RB"); attr[6] = new Attribute("RB_JJ"); attr[7] = new Attribute("amod"); attr[8] = new Attribute("acomp"); attr[9] = new Attribute("advmod"); //class FastVector classValue = new FastVector(3); classValue.addElement("p"); classValue.addElement("n"); classValue.addElement("o"); attr[10] = new Attribute("answer", classValue); FastVector attrs = new FastVector(); attrs.addElement(attr[0]); attrs.addElement(attr[1]); attrs.addElement(attr[2]); attrs.addElement(attr[3]); attrs.addElement(attr[4]); attrs.addElement(attr[5]); attrs.addElement(attr[6]); attrs.addElement(attr[7]); attrs.addElement(attr[8]); attrs.addElement(attr[9]); attrs.addElement(attr[10]); // Add Instances Instances dataset = new Instances("my_dataset", attrs, 0); StringTokenizer tokenizer = new StringTokenizer(input); while (tokenizer.hasMoreTokens()) { Instance example = new Instance(11); for (int j = 0; j < 11; j++) { String st = tokenizer.nextToken(); System.out.println(j + " " + st); if (j == 0) example.setValue(attr[j], Float.parseFloat(st)); else if (j == 10) example.setValue(attr[j], st); else example.setValue(attr[j], Integer.parseInt(st)); } ids += tokenizer.nextToken() + "\t"; dataset.add(example); } //Save dataset String file = "Classifier\\featurefile_additive_test4.arff"; ArffSaver saver = new ArffSaver(); saver.setInstances(dataset); saver.setFile(new File(file)); saver.writeBatch(); //Read dataset ArffLoader loader = new ArffLoader(); loader.setFile(new File(file)); dataset = loader.getDataSet(); //Build classifier dataset.setClassIndex(10); //Read classifier back String file1 = "Classifier\\classifier_add_asAndpolarwordsAndposAnddep.model"; InputStream is = new FileInputStream(file1); Classifier classifier; ObjectInputStream objectInputStream = new ObjectInputStream(is); classifier = (Classifier) objectInputStream.readObject(); //Evaluate Instances test = new Instances(dataset, 0, dataset.numInstances()); test.setClassIndex(10); //Do eval Evaluation eval = new Evaluation(test); //trainset eval.evaluateModel(classifier, test); //testset System.out.println(eval.toSummaryString()); System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure()); System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision()); System.out.println("WEIGHTED RECALL:" + eval.weightedRecall()); //output predictions String optest = "", val = ""; StringTokenizer op = new StringTokenizer(ids); int count = 0; while (op.hasMoreTokens()) { double[] prediction = classifier.distributionForInstance(test.instance(count)); count += 1; if (prediction[0] > prediction[1]) { if (prediction[0] > prediction[2]) { val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } else { if (prediction[1] > prediction[2]) { val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } optest += op.nextToken() + "\t" + val + "\n"; } rw.writeToFile(optest, "Answers_additive_Test4", "txt"); }
From source file:csav2.Weka_additive.java
public void classifyTestSet5(String input) throws Exception { String ids = ""; ReaderWriter rw = new ReaderWriter(); //ATTRIBUTES//www. j av a 2 s .co m Attribute attr[] = new Attribute[50]; //numeric attr[0] = new Attribute("Autosentiment"); attr[1] = new Attribute("PositiveMatch"); attr[2] = new Attribute("NegativeMatch"); attr[3] = new Attribute("FW"); attr[4] = new Attribute("JJ"); attr[5] = new Attribute("RB"); attr[6] = new Attribute("RB_JJ"); attr[7] = new Attribute("amod"); attr[8] = new Attribute("acomp"); attr[9] = new Attribute("advmod"); attr[10] = new Attribute("BLPos"); attr[11] = new Attribute("BLNeg"); //class FastVector classValue = new FastVector(3); classValue.addElement("p"); classValue.addElement("n"); classValue.addElement("o"); attr[12] = new Attribute("answer", classValue); FastVector attrs = new FastVector(); attrs.addElement(attr[0]); attrs.addElement(attr[1]); attrs.addElement(attr[2]); attrs.addElement(attr[3]); attrs.addElement(attr[4]); attrs.addElement(attr[5]); attrs.addElement(attr[6]); attrs.addElement(attr[7]); attrs.addElement(attr[8]); attrs.addElement(attr[9]); attrs.addElement(attr[10]); attrs.addElement(attr[11]); attrs.addElement(attr[12]); // Add Instances Instances dataset = new Instances("my_dataset", attrs, 0); StringTokenizer tokenizer = new StringTokenizer(input); while (tokenizer.hasMoreTokens()) { Instance example = new Instance(13); for (int j = 0; j < 13; j++) { String st = tokenizer.nextToken(); System.out.println(j + " " + st); if (j == 0) example.setValue(attr[j], Float.parseFloat(st)); else if (j == 12) example.setValue(attr[j], st); else example.setValue(attr[j], Integer.parseInt(st)); } ids += tokenizer.nextToken() + "\t"; dataset.add(example); } //Save dataset String file = "Classifier\\featurefile_additive_test5.arff"; ArffSaver saver = new ArffSaver(); saver.setInstances(dataset); saver.setFile(new File(file)); saver.writeBatch(); //Read dataset ArffLoader loader = new ArffLoader(); loader.setFile(new File(file)); dataset = loader.getDataSet(); //Build classifier dataset.setClassIndex(12); //Read classifier back String file1 = "Classifier\\classifier_add_asAndpolarwordsAndposAnddepAndbl.model"; InputStream is = new FileInputStream(file1); Classifier classifier; ObjectInputStream objectInputStream = new ObjectInputStream(is); classifier = (Classifier) objectInputStream.readObject(); //Evaluate Instances test = new Instances(dataset, 0, dataset.numInstances()); test.setClassIndex(12); //Do eval Evaluation eval = new Evaluation(test); //trainset eval.evaluateModel(classifier, test); //testset System.out.println(eval.toSummaryString()); System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure()); System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision()); System.out.println("WEIGHTED RECALL:" + eval.weightedRecall()); //output predictions String optest = "", val = ""; StringTokenizer op = new StringTokenizer(ids); int count = 0; while (op.hasMoreTokens()) { double[] prediction = classifier.distributionForInstance(test.instance(count)); count += 1; if (prediction[0] > prediction[1]) { if (prediction[0] > prediction[2]) { val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } else { if (prediction[1] > prediction[2]) { val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } optest += op.nextToken() + "\t" + val + "\n"; } rw.writeToFile(optest, "Answers_additive_Test5", "txt"); }
From source file:csav2.Weka_additive.java
public void classifyTestSet6(String input) throws Exception { String ids = ""; ReaderWriter rw = new ReaderWriter(); //ATTRIBUTES//from w w w .j a v a 2s. c o m Attribute attr[] = new Attribute[50]; //numeric attr[0] = new Attribute("Autosentiment"); attr[1] = new Attribute("PositiveMatch"); attr[2] = new Attribute("NegativeMatch"); attr[3] = new Attribute("FW"); attr[4] = new Attribute("JJ"); attr[5] = new Attribute("RB"); attr[6] = new Attribute("RB_JJ"); attr[7] = new Attribute("amod"); attr[8] = new Attribute("acomp"); attr[9] = new Attribute("advmod"); attr[10] = new Attribute("BLPos"); attr[11] = new Attribute("BLNeg"); attr[12] = new Attribute("VSPos"); attr[13] = new Attribute("VSNeg"); //class FastVector classValue = new FastVector(3); classValue.addElement("p"); classValue.addElement("n"); classValue.addElement("o"); attr[14] = new Attribute("answer", classValue); FastVector attrs = new FastVector(); attrs.addElement(attr[0]); attrs.addElement(attr[1]); attrs.addElement(attr[2]); attrs.addElement(attr[3]); attrs.addElement(attr[4]); attrs.addElement(attr[5]); attrs.addElement(attr[6]); attrs.addElement(attr[7]); attrs.addElement(attr[8]); attrs.addElement(attr[9]); attrs.addElement(attr[10]); attrs.addElement(attr[11]); attrs.addElement(attr[12]); attrs.addElement(attr[13]); attrs.addElement(attr[14]); // Add Instances Instances dataset = new Instances("my_dataset", attrs, 0); StringTokenizer tokenizer = new StringTokenizer(input); while (tokenizer.hasMoreTokens()) { Instance example = new Instance(15); for (int j = 0; j < 15; j++) { String st = tokenizer.nextToken(); System.out.println(j + " " + st); if (j == 0) example.setValue(attr[j], Float.parseFloat(st)); else if (j == 14) example.setValue(attr[j], st); else example.setValue(attr[j], Integer.parseInt(st)); } ids += tokenizer.nextToken() + "\t"; dataset.add(example); } //Save dataset String file = "Classifier\\featurefile_additive_test6.arff"; ArffSaver saver = new ArffSaver(); saver.setInstances(dataset); saver.setFile(new File(file)); saver.writeBatch(); //Read dataset ArffLoader loader = new ArffLoader(); loader.setFile(new File(file)); dataset = loader.getDataSet(); //Build classifier dataset.setClassIndex(14); //Read classifier back String file1 = "Classifier\\classifier_asAndpolarwordsAndposAnddepAndblAndvs.model"; InputStream is = new FileInputStream(file1); Classifier classifier; ObjectInputStream objectInputStream = new ObjectInputStream(is); classifier = (Classifier) objectInputStream.readObject(); //Evaluate Instances test = new Instances(dataset, 0, dataset.numInstances()); test.setClassIndex(14); //Do eval Evaluation eval = new Evaluation(test); //trainset eval.evaluateModel(classifier, test); //testset System.out.println(eval.toSummaryString()); System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure()); System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision()); System.out.println("WEIGHTED RECALL:" + eval.weightedRecall()); //output predictions String optest = "", val = ""; StringTokenizer op = new StringTokenizer(ids); int count = 0; while (op.hasMoreTokens()) { double[] prediction = classifier.distributionForInstance(test.instance(count)); count += 1; if (prediction[0] > prediction[1]) { if (prediction[0] > prediction[2]) { val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } else { if (prediction[1] > prediction[2]) { val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000); } else { val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000); } } optest += op.nextToken() + "\t" + val + "\n"; } rw.writeToFile(optest, "Answers_additive_Test6", "txt"); }
From source file:hero.unstable.test.parkinson.ClusteringBinaryPD.java
@Override public void evaluate(Solutions<Variable<Boolean>> solutions) { idxGeneration++;/*from w w w. j av a 2 s . c o m*/ for (int i = 0; i < solutions.size(); i++) { Solution<Variable<Boolean>> solution = solutions.get(i); // Select features: List<Integer> remainingFeatures = solutionAsList(solution); // Filter TRAINING data: Instances filteredData = data.filterAttributes("training", remainingFeatures); // Evaluate TRAINING: try { Evaluation result = cls.classify(filteredData); // Store metrics of the solution: double avgFValue = result.weightedFMeasure(); double avgTPR = result.weightedPrecision(); double avgPPV = result.weightedRecall(); solution.getObjectives().set(0, 1 - avgFValue); //solution.getObjectives().set(1, (double)filteredData.numAttributes()); logger.info("Average F-value = " + avgFValue); if (avgFValue > bestAccuracy) { logger.info("Best F-value = " + avgFValue + ". Number of features = " + filteredData.numAttributes() + ". For gen:" + (idxGeneration - 1) + ", solution: " + i + ". avgTPR: " + avgTPR + ", avgPPV: " + avgPPV); logger.info("Number of good solutions found: " + numOfGoodSolutions++); bestAccuracy = avgFValue; bestClassifier = cls; // Measure overfitting logger.info("Overffiting: " + (avgFValue - cls.classify(data.filterAttributes("test", remainingFeatures)).fMeasure(1)));//weightedFMeasure())); } } catch (Exception ex) { Logger.getLogger(ClusteringBinaryPD.class.getName()).log(Level.SEVERE, null, ex); } } //END FOR SOLUTIONS }
From source file:hero.unstable.util.classification.wekaClassifier.java
/** Result as: * [correctClassified, TPR(class True), TPR(class False), avgTPR, PPV(class True), PPV(class False), avgPPV, Fvalue(class True), Fvalue(class False), avgFvalue] * @param result/*from w ww.j a v a 2 s. c om*/ * @return 10 metrics */ public double[] getMetrics(Evaluation result) { double[] metrics = new double[10]; metrics[0] = result.pctCorrect() / 100; metrics[1] = result.precision(0); metrics[2] = result.precision(1); metrics[3] = result.weightedPrecision(); metrics[4] = result.recall(0); metrics[5] = result.recall(1); metrics[6] = result.weightedRecall(); metrics[7] = result.fMeasure(0); metrics[8] = result.fMeasure(1); metrics[9] = result.weightedFMeasure(); return metrics; }
From source file:net.sf.jclal.evaluation.measure.SingleLabelEvaluation.java
License:Open Source License
/** * * @param evaluation The evaluation//from w w w.j a va 2 s . co m */ public void setEvaluation(Evaluation evaluation) { try { this.evaluation = evaluation; StringBuilder st = new StringBuilder(); st.append("Iteration: ").append(getIteration()).append("\n"); st.append("Labeled set size: ").append(getLabeledSetSize()).append("\n"); st.append("Unlabelled set size: ").append(getUnlabeledSetSize()).append("\n"); st.append("\t\n"); st.append("Correctly Classified Instances: ").append(evaluation.pctCorrect()).append("\n"); st.append("Incorrectly Classified Instances: ").append(evaluation.pctIncorrect()).append("\n"); st.append("Kappa statistic: ").append(evaluation.kappa()).append("\n"); st.append("Mean absolute error: ").append(evaluation.meanAbsoluteError()).append("\n"); st.append("Root mean squared error: ").append(evaluation.rootMeanSquaredError()).append("\n"); st.append("Relative absolute error: ").append(evaluation.relativeAbsoluteError()).append("\n"); st.append("Root relative squared error: ").append(evaluation.rootRelativeSquaredError()).append("\n"); st.append("Coverage of cases: ").append(evaluation.coverageOfTestCasesByPredictedRegions()) .append("\n"); st.append("Mean region size: ").append(evaluation.sizeOfPredictedRegions()).append("\n"); st.append("Weighted Precision: ").append(evaluation.weightedPrecision()).append("\n"); st.append("Weighted Recall: ").append(evaluation.weightedRecall()).append("\n"); st.append("Weighted FMeasure: ").append(evaluation.weightedFMeasure()).append("\n"); st.append("Weighted TruePositiveRate: ").append(evaluation.weightedTruePositiveRate()).append("\n"); st.append("Weighted FalsePositiveRate: ").append(evaluation.weightedFalsePositiveRate()).append("\n"); st.append("Weighted MatthewsCorrelation: ").append(evaluation.weightedMatthewsCorrelation()) .append("\n"); st.append("Weighted AreaUnderROC: ").append(evaluation.weightedAreaUnderROC()).append("\n"); st.append("Weighted AreaUnderPRC: ").append(evaluation.weightedAreaUnderPRC()).append("\n"); st.append("\t\t\n"); loadMetrics(st.toString()); } catch (Exception e) { Logger.getLogger(SingleLabelEvaluation.class.getName()).log(Level.SEVERE, null, e); } }
From source file:org.openml.webapplication.io.Output.java
License:Open Source License
public static Map<Metric, MetricScore> evaluatorToMap(Evaluation evaluator, int classes, TaskType task) throws Exception { Map<Metric, MetricScore> m = new HashMap<Metric, MetricScore>(); if (task == TaskType.REGRESSION) { // here all measures for regression tasks m.put(new Metric("mean_absolute_error", "openml.evaluation.mean_absolute_error(1.0)"), new MetricScore(evaluator.meanAbsoluteError(), (int) evaluator.numInstances())); m.put(new Metric("mean_prior_absolute_error", "openml.evaluation.mean_prior_absolute_error(1.0)"), new MetricScore(evaluator.meanPriorAbsoluteError(), (int) evaluator.numInstances())); m.put(new Metric("root_mean_squared_error", "openml.evaluation.root_mean_squared_error(1.0)"), new MetricScore(evaluator.rootMeanSquaredError(), (int) evaluator.numInstances())); m.put(new Metric("root_mean_prior_squared_error", "openml.evaluation.root_mean_prior_squared_error(1.0)"), new MetricScore(evaluator.rootMeanPriorSquaredError(), (int) evaluator.numInstances())); m.put(new Metric("relative_absolute_error", "openml.evaluation.relative_absolute_error(1.0)"), new MetricScore(evaluator.relativeAbsoluteError() / 100, (int) evaluator.numInstances())); m.put(new Metric("root_relative_squared_error", "openml.evaluation.root_relative_squared_error(1.0)"), new MetricScore(evaluator.rootRelativeSquaredError() / 100, (int) evaluator.numInstances())); } else if (task == TaskType.CLASSIFICATION || task == TaskType.LEARNINGCURVE || task == TaskType.TESTTHENTRAIN) { m.put(new Metric("average_cost", "openml.evaluation.average_cost(1.0)"), new MetricScore(evaluator.avgCost(), (int) evaluator.numInstances())); m.put(new Metric("total_cost", "openml.evaluation.total_cost(1.0)"), new MetricScore(evaluator.totalCost(), (int) evaluator.numInstances())); m.put(new Metric("mean_absolute_error", "openml.evaluation.mean_absolute_error(1.0)"), new MetricScore(evaluator.meanAbsoluteError(), (int) evaluator.numInstances())); m.put(new Metric("mean_prior_absolute_error", "openml.evaluation.mean_prior_absolute_error(1.0)"), new MetricScore(evaluator.meanPriorAbsoluteError(), (int) evaluator.numInstances())); m.put(new Metric("root_mean_squared_error", "openml.evaluation.root_mean_squared_error(1.0)"), new MetricScore(evaluator.rootMeanSquaredError(), (int) evaluator.numInstances())); m.put(new Metric("root_mean_prior_squared_error", "openml.evaluation.root_mean_prior_squared_error(1.0)"), new MetricScore(evaluator.rootMeanPriorSquaredError(), (int) evaluator.numInstances())); m.put(new Metric("relative_absolute_error", "openml.evaluation.relative_absolute_error(1.0)"), new MetricScore(evaluator.relativeAbsoluteError() / 100, (int) evaluator.numInstances())); m.put(new Metric("root_relative_squared_error", "openml.evaluation.root_relative_squared_error(1.0)"), new MetricScore(evaluator.rootRelativeSquaredError() / 100, (int) evaluator.numInstances())); m.put(new Metric("prior_entropy", "openml.evaluation.prior_entropy(1.0)"), new MetricScore(evaluator.priorEntropy(), (int) evaluator.numInstances())); m.put(new Metric("kb_relative_information_score", "openml.evaluation.kb_relative_information_score(1.0)"), new MetricScore(evaluator.KBRelativeInformation() / 100, (int) evaluator.numInstances())); Double[] precision = new Double[classes]; Double[] recall = new Double[classes]; Double[] auroc = new Double[classes]; Double[] fMeasure = new Double[classes]; Double[] instancesPerClass = new Double[classes]; double[][] confussion_matrix = evaluator.confusionMatrix(); for (int i = 0; i < classes; ++i) { precision[i] = evaluator.precision(i); recall[i] = evaluator.recall(i); auroc[i] = evaluator.areaUnderROC(i); fMeasure[i] = evaluator.fMeasure(i); instancesPerClass[i] = 0.0;/*from w ww. ja va2 s . c o m*/ for (int j = 0; j < classes; ++j) { instancesPerClass[i] += confussion_matrix[i][j]; } } m.put(new Metric("predictive_accuracy", "openml.evaluation.predictive_accuracy(1.0)"), new MetricScore(evaluator.pctCorrect() / 100, (int) evaluator.numInstances())); m.put(new Metric("kappa", "openml.evaluation.kappa(1.0)"), new MetricScore(evaluator.kappa(), (int) evaluator.numInstances())); m.put(new Metric("number_of_instances", "openml.evaluation.number_of_instances(1.0)"), new MetricScore(evaluator.numInstances(), instancesPerClass, (int) evaluator.numInstances())); m.put(new Metric("precision", "openml.evaluation.precision(1.0)"), new MetricScore(evaluator.weightedPrecision(), precision, (int) evaluator.numInstances())); m.put(new Metric("recall", "openml.evaluation.recall(1.0)"), new MetricScore(evaluator.weightedRecall(), recall, (int) evaluator.numInstances())); m.put(new Metric("f_measure", "openml.evaluation.f_measure(1.0)"), new MetricScore(evaluator.weightedFMeasure(), fMeasure, (int) evaluator.numInstances())); if (Utils.isMissingValue(evaluator.weightedAreaUnderROC()) == false) { m.put(new Metric("area_under_roc_curve", "openml.evaluation.area_under_roc_curve(1.0)"), new MetricScore(evaluator.weightedAreaUnderROC(), auroc, (int) evaluator.numInstances())); } m.put(new Metric("confusion_matrix", "openml.evaluation.confusion_matrix(1.0)"), new MetricScore(confussion_matrix)); } return m; }