List of usage examples for weka.classifiers Evaluation recall
public double recall(int classIndex)
From source file:mao.datamining.ModelProcess.java
private void testWithExtraDS(Classifier classifier, Instances finalTrainDataSet, Instances finalTestDataSet, FileOutputStream testCaseSummaryOut, TestResult result) { //Use final training dataset and final test dataset double confusionMatrix[][] = null; long start, end, trainTime = 0, testTime = 0; if (finalTestDataSet != null) { try {/*www. j av a2s . c om*/ //counting training time start = System.currentTimeMillis(); classifier.buildClassifier(finalTrainDataSet); end = System.currentTimeMillis(); trainTime += end - start; //counting test time start = System.currentTimeMillis(); Evaluation testEvalOnly = new Evaluation(finalTrainDataSet); testEvalOnly.evaluateModel(classifier, finalTestDataSet); end = System.currentTimeMillis(); testTime += end - start; testCaseSummaryOut.write("=====================================================\n".getBytes()); testCaseSummaryOut.write((testEvalOnly.toSummaryString("=== Test Summary ===", true)).getBytes()); testCaseSummaryOut.write("\n".getBytes()); testCaseSummaryOut .write((testEvalOnly.toClassDetailsString("=== Test Class Detail ===\n")).getBytes()); testCaseSummaryOut.write("\n".getBytes()); testCaseSummaryOut .write((testEvalOnly.toMatrixString("=== Confusion matrix for Test ===\n")).getBytes()); testCaseSummaryOut.flush(); confusionMatrix = testEvalOnly.confusionMatrix(); result.setConfusionMatrix4Test(confusionMatrix); result.setAUT(testEvalOnly.areaUnderROC(1)); result.setPrecision(testEvalOnly.precision(1)); result.setRecall(testEvalOnly.recall(1)); } catch (Exception e) { ModelProcess.logging(null, e); } result.setTrainingTime(trainTime); result.setTestTime(testTime); } //using test data set , end }
From source file:org.openml.webapplication.io.Output.java
License:Open Source License
public static Map<Metric, MetricScore> evaluatorToMap(Evaluation evaluator, int classes, TaskType task) throws Exception { Map<Metric, MetricScore> m = new HashMap<Metric, MetricScore>(); if (task == TaskType.REGRESSION) { // here all measures for regression tasks m.put(new Metric("mean_absolute_error", "openml.evaluation.mean_absolute_error(1.0)"), new MetricScore(evaluator.meanAbsoluteError(), (int) evaluator.numInstances())); m.put(new Metric("mean_prior_absolute_error", "openml.evaluation.mean_prior_absolute_error(1.0)"), new MetricScore(evaluator.meanPriorAbsoluteError(), (int) evaluator.numInstances())); m.put(new Metric("root_mean_squared_error", "openml.evaluation.root_mean_squared_error(1.0)"), new MetricScore(evaluator.rootMeanSquaredError(), (int) evaluator.numInstances())); m.put(new Metric("root_mean_prior_squared_error", "openml.evaluation.root_mean_prior_squared_error(1.0)"), new MetricScore(evaluator.rootMeanPriorSquaredError(), (int) evaluator.numInstances())); m.put(new Metric("relative_absolute_error", "openml.evaluation.relative_absolute_error(1.0)"), new MetricScore(evaluator.relativeAbsoluteError() / 100, (int) evaluator.numInstances())); m.put(new Metric("root_relative_squared_error", "openml.evaluation.root_relative_squared_error(1.0)"), new MetricScore(evaluator.rootRelativeSquaredError() / 100, (int) evaluator.numInstances())); } else if (task == TaskType.CLASSIFICATION || task == TaskType.LEARNINGCURVE || task == TaskType.TESTTHENTRAIN) { m.put(new Metric("average_cost", "openml.evaluation.average_cost(1.0)"), new MetricScore(evaluator.avgCost(), (int) evaluator.numInstances())); m.put(new Metric("total_cost", "openml.evaluation.total_cost(1.0)"), new MetricScore(evaluator.totalCost(), (int) evaluator.numInstances())); m.put(new Metric("mean_absolute_error", "openml.evaluation.mean_absolute_error(1.0)"), new MetricScore(evaluator.meanAbsoluteError(), (int) evaluator.numInstances())); m.put(new Metric("mean_prior_absolute_error", "openml.evaluation.mean_prior_absolute_error(1.0)"), new MetricScore(evaluator.meanPriorAbsoluteError(), (int) evaluator.numInstances())); m.put(new Metric("root_mean_squared_error", "openml.evaluation.root_mean_squared_error(1.0)"), new MetricScore(evaluator.rootMeanSquaredError(), (int) evaluator.numInstances())); m.put(new Metric("root_mean_prior_squared_error", "openml.evaluation.root_mean_prior_squared_error(1.0)"), new MetricScore(evaluator.rootMeanPriorSquaredError(), (int) evaluator.numInstances())); m.put(new Metric("relative_absolute_error", "openml.evaluation.relative_absolute_error(1.0)"), new MetricScore(evaluator.relativeAbsoluteError() / 100, (int) evaluator.numInstances())); m.put(new Metric("root_relative_squared_error", "openml.evaluation.root_relative_squared_error(1.0)"), new MetricScore(evaluator.rootRelativeSquaredError() / 100, (int) evaluator.numInstances())); m.put(new Metric("prior_entropy", "openml.evaluation.prior_entropy(1.0)"), new MetricScore(evaluator.priorEntropy(), (int) evaluator.numInstances())); m.put(new Metric("kb_relative_information_score", "openml.evaluation.kb_relative_information_score(1.0)"), new MetricScore(evaluator.KBRelativeInformation() / 100, (int) evaluator.numInstances())); Double[] precision = new Double[classes]; Double[] recall = new Double[classes]; Double[] auroc = new Double[classes]; Double[] fMeasure = new Double[classes]; Double[] instancesPerClass = new Double[classes]; double[][] confussion_matrix = evaluator.confusionMatrix(); for (int i = 0; i < classes; ++i) { precision[i] = evaluator.precision(i); recall[i] = evaluator.recall(i); auroc[i] = evaluator.areaUnderROC(i); fMeasure[i] = evaluator.fMeasure(i); instancesPerClass[i] = 0.0;// ww w. j a v a 2 s . c om for (int j = 0; j < classes; ++j) { instancesPerClass[i] += confussion_matrix[i][j]; } } m.put(new Metric("predictive_accuracy", "openml.evaluation.predictive_accuracy(1.0)"), new MetricScore(evaluator.pctCorrect() / 100, (int) evaluator.numInstances())); m.put(new Metric("kappa", "openml.evaluation.kappa(1.0)"), new MetricScore(evaluator.kappa(), (int) evaluator.numInstances())); m.put(new Metric("number_of_instances", "openml.evaluation.number_of_instances(1.0)"), new MetricScore(evaluator.numInstances(), instancesPerClass, (int) evaluator.numInstances())); m.put(new Metric("precision", "openml.evaluation.precision(1.0)"), new MetricScore(evaluator.weightedPrecision(), precision, (int) evaluator.numInstances())); m.put(new Metric("recall", "openml.evaluation.recall(1.0)"), new MetricScore(evaluator.weightedRecall(), recall, (int) evaluator.numInstances())); m.put(new Metric("f_measure", "openml.evaluation.f_measure(1.0)"), new MetricScore(evaluator.weightedFMeasure(), fMeasure, (int) evaluator.numInstances())); if (Utils.isMissingValue(evaluator.weightedAreaUnderROC()) == false) { m.put(new Metric("area_under_roc_curve", "openml.evaluation.area_under_roc_curve(1.0)"), new MetricScore(evaluator.weightedAreaUnderROC(), auroc, (int) evaluator.numInstances())); } m.put(new Metric("confusion_matrix", "openml.evaluation.confusion_matrix(1.0)"), new MetricScore(confussion_matrix)); } return m; }
From source file:soccer.core.SimpleClassifier.java
public void evaluate() throws IOException, Exception { Instances data = loader.buildInstances(); NumericToNominal toNominal = new NumericToNominal(); toNominal.setOptions(new String[] { "-R", "5,6,8,9" }); toNominal.setInputFormat(data);/*w w w . j a va 2 s . c o m*/ data = Filter.useFilter(data, toNominal); data.setClassIndex(6); // DataSink.write(ARFF_STRING, data); EnsembleLibrary ensembleLib = new EnsembleLibrary(); ensembleLib.addModel("weka.classifiers.trees.J48"); ensembleLib.addModel("weka.classifiers.bayes.NaiveBayes"); ensembleLib.addModel("weka.classifiers.functions.SMO"); ensembleLib.addModel("weka.classifiers.meta.AdaBoostM1"); ensembleLib.addModel("weka.classifiers.meta.LogitBoost"); ensembleLib.addModel("classifiers.trees.DecisionStump"); ensembleLib.addModel("classifiers.trees.DecisionStump"); EnsembleLibrary.saveLibrary(new File("./ensembleLib.model.xml"), ensembleLib, null); EnsembleSelection model = new EnsembleSelection(); model.setOptions(new String[] { "-L", "./ensembleLib.model.xml", // </path/to/modelLibrary>"-W", path+"esTmp", // </path/to/working/directory> - "-B", "10", // <numModelBags> "-E", "1.0", // <modelRatio>. "-V", "0.25", // <validationRatio> "-H", "100", // <hillClimbIterations> "-I", "1.0", // <sortInitialization> "-X", "2", // <numFolds> "-P", "roc", // <hillclimbMettric> "-A", "forward", // <algorithm> "-R", "true", // - Flag to be selected more than once "-G", "true", // - stops adding models when performance degrades "-O", "true", // - verbose output. "-S", "1", // <num> - Random number seed. "-D", "true" // - run in debug mode }); // double resES[] = evaluate(ensambleSel); // System.out.println("Ensemble Selection\n" // + "\tchurn: " + resES[0] + "\n" // + "\tappetency: " + resES[1] + "\n" // + "\tup-sell: " + resES[2] + "\n" // + "\toverall: " + resES[3] + "\n"); // models.add(new J48()); // models.add(new RandomForest()); // models.add(new NaiveBayes()); // models.add(new AdaBoostM1()); // models.add(new Logistic()); // models.add(new MultilayerPerceptron()); int FOLDS = 5; Evaluation eval = new Evaluation(data); // // for (Classifier model : models) { eval.crossValidateModel(model, data, FOLDS, new Random(1), new Object[] {}); System.out.println(model.getClass().getName() + "\n" + "\tRecall: " + eval.recall(1) + "\n" + "\tPrecision: " + eval.precision(1) + "\n" + "\tF-measure: " + eval.fMeasure(1)); System.out.println(eval.toSummaryString()); // } // LogitBoost cl = new LogitBoost(); // cl.setOptions(new String[] { // "-Q", "-I", "100", "-Z", "4", "-O", "4", "-E", "4" // }); // cl.buildClassifier(data); // Evaluation eval = new Evaluation(data); // eval.crossValidateModel(cl, data, 6, new Random(1), new Object[]{}); // System.out.println(eval.weightedFMeasure()); // System.out.println(cl.graph()); // System.out.println(cl.globalInfo()); }