List of usage examples for weka.classifiers Evaluation numTrueNegatives
public double numTrueNegatives(int classIndex)
From source file:adams.flow.core.EvaluationHelper.java
License:Open Source License
/** * Returns a statistical value from the evaluation object. * * @param eval the evaluation object to get the value from * @param statistic the type of value to return * @param classIndex the class label index, for statistics like AUC * @return the determined value, Double.NaN if not found * @throws Exception if evaluation fails */// w w w . j a v a2s .c o m public static double getValue(Evaluation eval, EvaluationStatistic statistic, int classIndex) throws Exception { switch (statistic) { case NUMBER_CORRECT: return eval.correct(); case NUMBER_INCORRECT: return eval.incorrect(); case NUMBER_UNCLASSIFIED: return eval.unclassified(); case PERCENT_CORRECT: return eval.pctCorrect(); case PERCENT_INCORRECT: return eval.pctIncorrect(); case PERCENT_UNCLASSIFIED: return eval.pctUnclassified(); case KAPPA_STATISTIC: return eval.kappa(); case MEAN_ABSOLUTE_ERROR: return eval.meanAbsoluteError(); case ROOT_MEAN_SQUARED_ERROR: return eval.rootMeanSquaredError(); case RELATIVE_ABSOLUTE_ERROR: return eval.relativeAbsoluteError(); case ROOT_RELATIVE_SQUARED_ERROR: return eval.rootRelativeSquaredError(); case CORRELATION_COEFFICIENT: return eval.correlationCoefficient(); case SF_PRIOR_ENTROPY: return eval.SFPriorEntropy(); case SF_SCHEME_ENTROPY: return eval.SFSchemeEntropy(); case SF_ENTROPY_GAIN: return eval.SFEntropyGain(); case SF_MEAN_PRIOR_ENTROPY: return eval.SFMeanPriorEntropy(); case SF_MEAN_SCHEME_ENTROPY: return eval.SFMeanSchemeEntropy(); case SF_MEAN_ENTROPY_GAIN: return eval.SFMeanEntropyGain(); case KB_INFORMATION: return eval.KBInformation(); case KB_MEAN_INFORMATION: return eval.KBMeanInformation(); case KB_RELATIVE_INFORMATION: return eval.KBRelativeInformation(); case TRUE_POSITIVE_RATE: return eval.truePositiveRate(classIndex); case NUM_TRUE_POSITIVES: return eval.numTruePositives(classIndex); case FALSE_POSITIVE_RATE: return eval.falsePositiveRate(classIndex); case NUM_FALSE_POSITIVES: return eval.numFalsePositives(classIndex); case TRUE_NEGATIVE_RATE: return eval.trueNegativeRate(classIndex); case NUM_TRUE_NEGATIVES: return eval.numTrueNegatives(classIndex); case FALSE_NEGATIVE_RATE: return eval.falseNegativeRate(classIndex); case NUM_FALSE_NEGATIVES: return eval.numFalseNegatives(classIndex); case IR_PRECISION: return eval.precision(classIndex); case IR_RECALL: return eval.recall(classIndex); case F_MEASURE: return eval.fMeasure(classIndex); case MATTHEWS_CORRELATION_COEFFICIENT: return eval.matthewsCorrelationCoefficient(classIndex); case AREA_UNDER_ROC: return eval.areaUnderROC(classIndex); case AREA_UNDER_PRC: return eval.areaUnderPRC(classIndex); case WEIGHTED_TRUE_POSITIVE_RATE: return eval.weightedTruePositiveRate(); case WEIGHTED_FALSE_POSITIVE_RATE: return eval.weightedFalsePositiveRate(); case WEIGHTED_TRUE_NEGATIVE_RATE: return eval.weightedTrueNegativeRate(); case WEIGHTED_FALSE_NEGATIVE_RATE: return eval.weightedFalseNegativeRate(); case WEIGHTED_IR_PRECISION: return eval.weightedPrecision(); case WEIGHTED_IR_RECALL: return eval.weightedRecall(); case WEIGHTED_F_MEASURE: return eval.weightedFMeasure(); case WEIGHTED_MATTHEWS_CORRELATION_COEFFICIENT: return eval.weightedMatthewsCorrelation(); case WEIGHTED_AREA_UNDER_ROC: return eval.weightedAreaUnderROC(); case WEIGHTED_AREA_UNDER_PRC: return eval.weightedAreaUnderPRC(); case UNWEIGHTED_MACRO_F_MEASURE: return eval.unweightedMacroFmeasure(); case UNWEIGHTED_MICRO_F_MEASURE: return eval.unweightedMicroFmeasure(); case BIAS: return eval.getPluginMetric(Bias.class.getName()).getStatistic(Bias.NAME); case RSQUARED: return eval.getPluginMetric(RSquared.class.getName()).getStatistic(RSquared.NAME); case SDR: return eval.getPluginMetric(SDR.class.getName()).getStatistic(SDR.NAME); case RPD: return eval.getPluginMetric(RPD.class.getName()).getStatistic(RPD.NAME); default: throw new IllegalArgumentException("Unhandled statistic field: " + statistic); } }
From source file:entity.NfoldCrossValidationManager.java
License:Open Source License
/** * n fold cross validation without noise * /*from w w w.j a v a2 s .c om*/ * @param classifier * @param dataset * @param folds * @return */ public Stats crossValidate(Classifier classifier, Instances dataset, int folds) { // randomizes order of instances Instances randDataset = new Instances(dataset); randDataset.randomize(RandomizationManager.randomGenerator); // cross-validation Evaluation eval = null; try { eval = new Evaluation(randDataset); } catch (Exception e) { e.printStackTrace(); } for (int n = 0; n < folds; n++) { Instances test = randDataset.testCV(folds, n); Instances train = randDataset.trainCV(folds, n, RandomizationManager.randomGenerator); // build and evaluate classifier Classifier clsCopy; try { clsCopy = Classifier.makeCopy(classifier); clsCopy.buildClassifier(train); eval.evaluateModel(clsCopy, test); } catch (Exception e) { e.printStackTrace(); } } // output evaluation for the nfold cross validation Double precision = eval.precision(Settings.classificationChoice); Double recall = eval.recall(Settings.classificationChoice); Double fmeasure = eval.fMeasure(Settings.classificationChoice); Double classificationTP = eval.numTruePositives(Settings.classificationChoice); Double classificationTN = eval.numTrueNegatives(Settings.classificationChoice); Double classificationFP = eval.numFalsePositives(Settings.classificationChoice); Double classificationFN = eval.numFalseNegatives(Settings.classificationChoice); Double kappa = eval.kappa(); return new Stats(classificationTP, classificationTN, classificationFP, classificationFN, kappa, precision, recall, fmeasure); }
From source file:entity.NfoldCrossValidationManager.java
License:Open Source License
/** * n fold cross validation with noise (independent fp and fn) * /* w w w .j a v a 2 s . c o m*/ * @param classifier * @param dataset * @param folds * @return */ public Stats crossValidateWithNoise(Classifier classifier, Instances dataset, int folds, BigDecimal fpPercentage, BigDecimal fnPercentage) { // noise manager NoiseInjectionManager noiseInjectionManager = new NoiseInjectionManager(); // randomizes order of instances Instances randDataset = new Instances(dataset); randDataset.randomize(RandomizationManager.randomGenerator); // cross-validation Evaluation eval = null; try { eval = new Evaluation(randDataset); } catch (Exception e) { e.printStackTrace(); } for (int n = 0; n < folds; n++) { Instances test = randDataset.testCV(folds, n); Instances train = randDataset.trainCV(folds, n, RandomizationManager.randomGenerator); // copies instances of train set to not modify the original Instances noisyTrain = new Instances(train); // injects level of noise in the copied train set noiseInjectionManager.addNoiseToDataset(noisyTrain, fpPercentage, fnPercentage); // build and evaluate classifier Classifier clsCopy; try { clsCopy = Classifier.makeCopy(classifier); // trains the model using a noisy train set clsCopy.buildClassifier(noisyTrain); eval.evaluateModel(clsCopy, test); } catch (Exception e) { e.printStackTrace(); } } // output evaluation for the nfold cross validation Double precision = eval.precision(Settings.classificationChoice); Double recall = eval.recall(Settings.classificationChoice); Double fmeasure = eval.fMeasure(Settings.classificationChoice); Double classificationTP = eval.numTruePositives(Settings.classificationChoice); Double classificationTN = eval.numTrueNegatives(Settings.classificationChoice); Double classificationFP = eval.numFalsePositives(Settings.classificationChoice); Double classificationFN = eval.numFalseNegatives(Settings.classificationChoice); Double kappa = eval.kappa(); return new Stats(classificationTP, classificationTN, classificationFP, classificationFN, kappa, precision, recall, fmeasure); }
From source file:entity.NfoldCrossValidationManager.java
License:Open Source License
/** * n fold cross validation with noise (combined fp and fn) * //from w ww. ja v a 2s .co m * @param classifier * @param dataset * @param folds * @return */ public Stats crossValidateWithNoise(Classifier classifier, Instances dataset, int folds, BigDecimal combinedFpFnPercentage) { // noise manager NoiseInjectionManager noiseInjectionManager = new NoiseInjectionManager(); // randomizes order of instances Instances randDataset = new Instances(dataset); randDataset.randomize(RandomizationManager.randomGenerator); // cross-validation Evaluation eval = null; try { eval = new Evaluation(randDataset); } catch (Exception e) { e.printStackTrace(); } for (int n = 0; n < folds; n++) { Instances test = randDataset.testCV(folds, n); Instances train = randDataset.trainCV(folds, n, RandomizationManager.randomGenerator); // copies instances of train set to not modify the original Instances noisyTrain = new Instances(train); // injects level of noise in the copied train set noiseInjectionManager.addNoiseToDataset(noisyTrain, combinedFpFnPercentage); // build and evaluate classifier Classifier clsCopy; try { clsCopy = Classifier.makeCopy(classifier); // trains the model using a noisy train set clsCopy.buildClassifier(noisyTrain); eval.evaluateModel(clsCopy, test); } catch (Exception e) { e.printStackTrace(); } } // output evaluation for the nfold cross validation Double precision = eval.precision(Settings.classificationChoice); Double recall = eval.recall(Settings.classificationChoice); Double fmeasure = eval.fMeasure(Settings.classificationChoice); Double classificationTP = eval.numTruePositives(Settings.classificationChoice); Double classificationTN = eval.numTrueNegatives(Settings.classificationChoice); Double classificationFP = eval.numFalsePositives(Settings.classificationChoice); Double classificationFN = eval.numFalseNegatives(Settings.classificationChoice); Double kappa = eval.kappa(); return new Stats(classificationTP, classificationTN, classificationFP, classificationFN, kappa, precision, recall, fmeasure); }
From source file:it.unisa.gitdm.evaluation.WekaEvaluator.java
private static void evaluateModel(String baseFolderPath, String projectName, Classifier pClassifier, Instances pInstances, String pModelName, String pClassifierName) throws Exception { // other options int folds = 10; // randomize data Random rand = new Random(42); Instances randData = new Instances(pInstances); randData.randomize(rand);/*from w w w . ja va2s .com*/ if (randData.classAttribute().isNominal()) { randData.stratify(folds); } // perform cross-validation and add predictions Instances predictedData = null; Evaluation eval = new Evaluation(randData); int positiveValueIndexOfClassFeature = 0; for (int n = 0; n < folds; n++) { Instances train = randData.trainCV(folds, n); Instances test = randData.testCV(folds, n); // the above code is used by the StratifiedRemoveFolds filter, the // code below by the Explorer/Experimenter: // Instances train = randData.trainCV(folds, n, rand); int classFeatureIndex = 0; for (int i = 0; i < train.numAttributes(); i++) { if (train.attribute(i).name().equals("isBuggy")) { classFeatureIndex = i; break; } } Attribute classFeature = train.attribute(classFeatureIndex); for (int i = 0; i < classFeature.numValues(); i++) { if (classFeature.value(i).equals("TRUE")) { positiveValueIndexOfClassFeature = i; } } train.setClassIndex(classFeatureIndex); test.setClassIndex(classFeatureIndex); // build and evaluate classifier pClassifier.buildClassifier(train); eval.evaluateModel(pClassifier, test); // add predictions // AddClassification filter = new AddClassification(); // filter.setClassifier(pClassifier); // filter.setOutputClassification(true); // filter.setOutputDistribution(true); // filter.setOutputErrorFlag(true); // filter.setInputFormat(train); // Filter.useFilter(train, filter); // Instances pred = Filter.useFilter(test, filter); // if (predictedData == null) // predictedData = new Instances(pred, 0); // // for (int j = 0; j < pred.numInstances(); j++) // predictedData.add(pred.instance(j)); } double accuracy = (eval.numTruePositives(positiveValueIndexOfClassFeature) + eval.numTrueNegatives(positiveValueIndexOfClassFeature)) / (eval.numTruePositives(positiveValueIndexOfClassFeature) + eval.numFalsePositives(positiveValueIndexOfClassFeature) + eval.numFalseNegatives(positiveValueIndexOfClassFeature) + eval.numTrueNegatives(positiveValueIndexOfClassFeature)); double fmeasure = 2 * ((eval.precision(positiveValueIndexOfClassFeature) * eval.recall(positiveValueIndexOfClassFeature)) / (eval.precision(positiveValueIndexOfClassFeature) + eval.recall(positiveValueIndexOfClassFeature))); File wekaOutput = new File(baseFolderPath + projectName + "/predictors.csv"); PrintWriter pw1 = new PrintWriter(wekaOutput); pw1.write(accuracy + ";" + eval.precision(positiveValueIndexOfClassFeature) + ";" + eval.recall(positiveValueIndexOfClassFeature) + ";" + fmeasure + ";" + eval.areaUnderROC(positiveValueIndexOfClassFeature)); System.out.println(projectName + ";" + pClassifierName + ";" + pModelName + ";" + eval.numTruePositives(positiveValueIndexOfClassFeature) + ";" + eval.numFalsePositives(positiveValueIndexOfClassFeature) + ";" + eval.numFalseNegatives(positiveValueIndexOfClassFeature) + ";" + eval.numTrueNegatives(positiveValueIndexOfClassFeature) + ";" + accuracy + ";" + eval.precision(positiveValueIndexOfClassFeature) + ";" + eval.recall(positiveValueIndexOfClassFeature) + ";" + fmeasure + ";" + eval.areaUnderROC(positiveValueIndexOfClassFeature) + "\n"); }
From source file:meddle.TrainModelByDomainOS.java
License:Open Source License
/** * Do evalution on trained classifier/model, including the summary, false * positive/negative rate, AUC, running time * * @param j48// w w w . ja va 2 s . c o m * - the trained classifier * @param domain * - the domain name */ public static MetaEvaluationMeasures doEvaluation(Classifier classifier, String domainOS, Instances tras, MetaEvaluationMeasures mem) { try { Evaluation evaluation = new Evaluation(tras); evaluation.crossValidateModel(classifier, tras, 10, new Random(1)); mem.numInstance = evaluation.numInstances(); double M = evaluation.numTruePositives(1) + evaluation.numFalseNegatives(1); mem.numPositive = (int) M; mem.AUC = evaluation.areaUnderROC(1); mem.numCorrectlyClassified = (int) evaluation.correct(); mem.accuracy = 1.0 * mem.numCorrectlyClassified / mem.numInstance; mem.falseNegativeRate = evaluation.falseNegativeRate(1); mem.falsePositiveRate = evaluation.falsePositiveRate(1); mem.fMeasure = evaluation.fMeasure(1); double[][] cmMatrix = evaluation.confusionMatrix(); mem.confusionMatrix = cmMatrix; mem.TP = evaluation.numTruePositives(1); mem.TN = evaluation.numTrueNegatives(1); mem.FP = evaluation.numFalsePositives(1); mem.FN = evaluation.numFalseNegatives(1); } catch (Exception e) { e.printStackTrace(); } return mem; }